1.南华大学 化学化工学院,湖南省天然锕系元素配合物设计与应用重点实验室,湖南 衡阳 421001
2.宁夏医科大学附属自治区人民医院,宁夏 银川 750001
3.湖南大学 化学/生物传感与化学计量学国家重点实验室,湖南 长沙 410082
肖锡林,博士,教授,研究方向:电化学传感及药物分析检测,E-mail: xiaoxl2001@163.com
扫 描 看 全 文
张迪,李强翔,王志梅等.磁性分子印迹电化学传感法检测痕量奥卡西平[J].分析测试学报,2021,40(08):1136-1144.
ZHANG Di,LI Qiang-xiang,WANG Zhi-mei,et al.Detection of Oxcarbazepine Using an Electrochemical Sensor Based on Magnetic Molecularly Imprinted Membrane[J].Journal of Instrumental Analysis,2021,40(08):1136-1144.
张迪,李强翔,王志梅等.磁性分子印迹电化学传感法检测痕量奥卡西平[J].分析测试学报,2021,40(08):1136-1144. DOI: 10.19969/j.fxcsxb.20110602.
ZHANG Di,LI Qiang-xiang,WANG Zhi-mei,et al.Detection of Oxcarbazepine Using an Electrochemical Sensor Based on Magnetic Molecularly Imprinted Membrane[J].Journal of Instrumental Analysis,2021,40(08):1136-1144. DOI: 10.19969/j.fxcsxb.20110602.
该文以4-乙烯基吡啶和甲基丙烯酸酯为原料制备了一种可用于检测奥卡西平(OXC)的磁性分子印迹电化学传感器(MNPs-MIP/MCPE)。首先,依据密度泛函数理论(DFT/B3LYP/6-31 + G)计算,实验成功地筛选和构建出OXC与功能单体的最佳组合及比例。随后,基于沉淀聚合法合成了能够识别OXC的磁性分子印迹膜(MNPs-MIP),将MNPs-MIP覆于碳糊电极(MCPE)表面制成MNPs-MIP/MCPE。采用差分脉冲伏安法(DPV)将MNPs-MIP/MCPE传感器用于不同浓度OXC的测定。结果显示,传感器的峰电流信号随OXC浓度的增大而增大,且OXC分别在5 × 10,-8,~3 × 10,-6, mol/L和3 × 10,-6,~1.5 × 10,-4, mol/L浓度范围内与其峰电流信号呈线性关系,其线性方程分别为:,I,p,(μA) = 1.755 + 1.097,c, (μmol/L),相关系数(,r,) = 0.999 7和,I,p,(μA) = 0.131 + 5.177,c, (μmol/L),,r ,= 0.999 6。OXC的检出限(LOD = 3,S/m,)为2.06 × 10,-8, mol/L。该传感器成功用于实际样品中OXC含量的检测,其回收率为99.4%~101%,相对标准偏差(RSD)为1.5%~2.5%。
In this paper, a magnetic molecularly imprinted electrochemical sensor(MNPs-MIP/MCPE) for the detection of oxcarbazepine(OXC) was prepared, using 4-vinylpyridine and methacrylate as raw materials. Firstly, according to the calculation of the density functional theory(DFT/B3LYP/6-31 + G), the best combination and the best combination ratio of the OXC with functional monomers were successfully screened and constructed. Subsequently, a magnetic molecularly imprinted membrane(MNPs-MIP) capable of recognizing OXC was synthesized based on the precipitation polymerization method, which was coated on the surface of a carbon paste electrode(MCPE) to make a magnetic molecularly imprinted sensor of MNPs-MIP/MCPE. The sensor was used for the determination of different concentrations of OXC solutions with differential pulse voltammetry(DPV). Results showed that, the current signals of the system had good linear relationship(,r ,>, 0.999) with OXC concentrations in the ranges of 5 × 10,-8,-3 × 10,-6 ,mol/L and 3 × 10,-6,-1.5 × 10,-4 ,mol/L, and their linear equations were ,I,p,(μA) = 1.755 + 1.097,c, (μmol/L) and ,I,p,(μA)= 0.131 + 5.177,c, (μmol/L), respectively. The detection limit for OXC(LOD = 3,S,/,m,) was 2.06 × 10,-8, mol/L. The sensor was used for the detection of OXC concentration in the actual samples, with recoveries of 99.4%-101% and relative standard deviations (RSD) of 1.5%-2.5%.
分子印迹电化学传感器磁性碳糊电极检测奥卡西平
molecularly imprinted membraneelectrochemical sensormagnetic carbon paste electrodedetectionoxcarbazepine
Lin W W, Li X W, Jiao Z, Zhang J, Rao X, Zeng D Y, Lin X H, Wang C L. Eur. J. Clin. Pharmacol., 2019, 75(3): 381-392.
Olga D R, Calvo M E B, Asunción A L M, Julia A M M. Sens. Lett., 2010, 8(2): 268-272.
Sodeifian G, Hazaveie S M, Sajadian S A, Razmimanesh F. Fluid Phase Equilibr., 2019, 493:160-173.
Lima A B, de Oliveira F M, Guedes T D J, Sousa R M F, Munoz R A A, dos Santos W T P. Electrochim. Acta, 2018, 260: 564-570.
Deepakumari H, Revanasiddappa H. Arab. J. Chem., 2016, 9(1): S725-S730.
Liu M H, Wang Y Y, Jiang Y P, Liu H T, Chen J J, Liu S. Appl. Spectrosc., 2019, 73(7): 801-809.
de Jesus Antunes N, Wichert-Ana L, Coelho E B, Della Pasqua O, Jr.Alexandre V, Takayanagui O M, Tozatto E, Lanchote V L. Chirality, 2013, 25(12): 897-903.
Liu T C, Yin K, Liu C B, Luo J M, Crittenden J, Zhang W Q, Luo S L, He Q Y, Deng Y X, Liu H, Zhang D Y. Water Res., 2018, 147: 204-213.
Rajendraprasad N, Basavaiah K, Vinay K B. Int. J. Anal. Chem., 2011, 2011: 138628.
Mohamed F A, Ali M F B, Rageh A H, Mostafa A M. Microchem. J., 2019, 146: 414-422.
Wang H J, Qian D, Xiao X L, He B, Gao S Q, Shi H, Liao L F, Deng J. Electrochim. Acta, 2017, 246: 338-347.
Yu Z Z, Kang T F, Lu L P. J. Instrum. Anal.(于壮壮, 康天放, 鲁理平. 分析测试学报), 2020, 39(2): 182-189.
Gast M, Sobek H, Mizaikoff B. Trac-trend Anal. Chem.,2019, 114: 218-232.
Fan F L, Qin Z, Bai J, Rong W D, Fan F Y, Tian W, Wu X L, Wang Y, Zhao L. J. Environ. Radioactiv., 2012, 106: 40-46.
Yang L F, Li N, Wang K, Hai X M, Liu J X, Dang F Q. Talanta, 2018, 179:531-537.
Wang S, Si H T, Wang B, Shan J J, Yang X L. RSC Adv., 2015, 5(11): 8028-8036.
Wei Y, Han B, Hu X Y, Lin Y H, Wang X Z, Deng X L. Procedia Eng., 2012, 27: 632-637.
Zhang M L, Zhang Z H, Liu Y N, Yang X, Luo L J, Chen J T, Yao S Z. Chem. Eng. J., 2011, 178: 443-450.
Su C L, Li Z Y, Zhang D, Wang Z M, Zhou X, Liao L F, Xiao X L. Biosens. Bioelectron., 2020, 148: 111819.
Peng H P, Liang R P, Qiu J D. Biosens. Bioelectron., 2011, 26(6): 3005-3011.
Liang D D, Wang Y, Li S Y, Li Y Q, Zhang M L, Li Y, Tian W S, Liu J B, Tang S S, Li B, Jin R F. Int. J. Mol. Sci.,2016, 17(11): 1750.
Yang W M, Liu L K, Ni X N, Zhou W, Huang W H, Liu H, Xu W Z. J. Sep. Sci., 2016, 39(3): 503-517.
Lu C X, Tang Z G, Gao X X, Ma X M, Liu C B. Microchim. Acta, 2018, 185(8): 373.
Ramstroem O, Andersson L I, Mosbach K. J. Org. Chem., 1993, 58(26): 7562-7564.
Yu X L, Liu H, Diao J X, Sun Y, Wang Y C. Sep. Purif . Technol., 2018, 204: 213-219.
Xiao N, Deng J, Cheng J L, Ju S Q, Zhao H Q, Xie J, Qian D, He J. Biosens. Bioelectron., 2016, 81: 54-60.
Nosal-Wierciñska A, Yilmaz S, Binel S, Yagmur S, Saglikoglu G, Sadikoglu M, Yıldız M. Croat. Chem. Acta, 2014, 87(3): 213-219.
Chandra U, Kumara Swamy B E, Gilbert O, Sherigara B S. Electrochim. Acta, 2010, 55(24): 7166-7174.
Hu C H, Deng J, Xiao X L, Zhan X Z, Huang K H, Xiao N, Ju S Q. Electrochim. Acta, 2015, 158: 298-305.
Peng P C, Liao L F, Yu Z H, Jiang M, Deng J, Xiao X. Int. J. Environ. Anal. Chem., 2019, 99(15): 1495-1514.
Jafar A, Hadi H, Hosseinzadeh K R. Anal. Methods, 2014, 6(3): 850-856.
Apaydın E R, Saglikoglu G, Yilmaz S, Yildiz M. Int. J. Electrochem. Sci., 2015, 10: 1904-1915.
0
浏览量
4
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构