洛阳理工学院 环境工程与化学学院,河南 洛阳 471023
张少文,博士,教授,研究方向:色谱分离分析及样品前处理技术,E-mail:zhsw155@163.com
扫 描 看 全 文
彭传云,张少文,冯勇等.酰胺修饰杂化硅胶整体柱的制备及其在莱克多巴胺检测中的应用[J].分析测试学报,2021,40(08):1177-1183.
PENG Chuan-yun,ZHANG Shao-wen,FENG Yong,et al.Preparation of Amide Modified Silica Hybrid Monolithic Column and Its Application in Ractopamine Determination[J].Journal of Instrumental Analysis,2021,40(08):1177-1183.
彭传云,张少文,冯勇等.酰胺修饰杂化硅胶整体柱的制备及其在莱克多巴胺检测中的应用[J].分析测试学报,2021,40(08):1177-1183. DOI: 10.19969/j.fxcsxb.20092202.
PENG Chuan-yun,ZHANG Shao-wen,FENG Yong,et al.Preparation of Amide Modified Silica Hybrid Monolithic Column and Its Application in Ractopamine Determination[J].Journal of Instrumental Analysis,2021,40(08):1177-1183. DOI: 10.19969/j.fxcsxb.20092202.
以氧化琼脂糖(AG)和四甲氧基硅烷(TMOS)为前驱体,通过溶胶-凝胶法制备AG/SiO,2,整体柱,利用酰胺化反应对整体柱进行酰胺基团修饰。通过X射线光电子能谱(XPS)、傅里叶变换红外光谱(FTIR)、N,2,吸附-脱附和扫描电镜(SEM)等表征手段对所制备材料的结构和形貌进行分析。结果显示酰胺基团被成功修饰至整体柱,该材料具有良好的通透性及较大的比表面积。以其为固相微萃取介质对羊肉中的莱克多巴胺进行萃取富集,在优化的样品前处理条件下,采用基质添加标准曲线法,结合高效液相色谱-紫外(HPLC-UV)检测,建立了羊肉中痕量莱克多巴胺的分析方法。该方法在1.94~1 170 ng/g范围内线性良好,相关系数(,r,2,)为0.993 1,检出限(LOD)和定量下限(LOQ)分别为0.618、1.94 ng/g,3个不同加标水平下样品的平均回收率为86.6%~103%,相对标准偏差(RSD,,n ,= 5)为4.8%~7.3%。该方法具有检出限低、回收率高、样品用量少等特点,可用于羊肉中痕量莱克多巴胺的灵敏检测。
An agrose/silica(AG/SiO,2,) monolithic column was prepared via sol-gel reaction with oxide agrose(AG) and tetramethoxysilane(TMOS) as precursors, and then amide groups were modified through amidation reaction. The structure and morphology of the prepared monolithic column were investigated by X-ray photoelectron spectroscopy(XPS), Fourier transform infrared spectroscopy(FTIR), N,2,/adsorption-desorption and scanning electron microscopy(SEM). Results indicated that amide groups were successfully modified on the surface of AG/SiO,2, monolithic column. The monolith possessed satisfactory permeability and larger specific surface area which could contribute to better extraction and enrichment efficiency. Thereafter, the monolith was used as solid-phase micro-extraction pattern for extraction and enrichment of ractopamine in mutton samples. The pretreatment conditions of real samples were optimized thoroughly, including extraction solvent, pH value, extraction rate, elution rate and elution volume. As a result, the optimized conditions such as an extraction solvent of acetonitrile-water(7∶3), a pH value of 5.6, an extraction rate of 0.05 mL/min, an elution rate of 0.03 mL/min and an elution volume of 25 μL were used for cleaning up ractopamine from mutton samples. Under the optimized sample pretreatment conditions, coupled with common high performance liquid chromatography with ultraviolet detection(HPLC-UV), a method for determination of ractopamine was established by using a matrix addition standard curve. The linear range of the method was 1.94-1 170 ng/g with a correlation coefficient(,r,2,) of 0.993 1. The limit of detection(LOD, ,S,/,N ,= 3) was 0.618 ng/g, while the limit of quantitation(LOQ, ,S,/,N ,= 10) was 1.94 ng/g. The recoveries at three spiked levels ranged from 86.6% to 103%, with relative standard deviations(RSD) of 4.8%-7.3% by repeating the same experiment for 5 times. The established method was applicable for detection of trace residue of ractopamine in real mutton samples with the advantages of sensitivity, efficiency, reliability, high recovery and low usage of samples.
高效液相色谱硅胶整体柱固相微萃取莱克多巴胺羊肉
high performance liquid chromatographysilica monolithic columnsolid-phase micro-extractionractopaminemutton
Zhu W X, Yang J Z, Guo H L, Zhang L, Wang C J, Zhang L. J. Instrum. Anal.(祝伟霞, 杨冀州, 郭慧领, 张莉, 王彩娟, 张丽. 分析测试学报), 2015, 34(7): 802-806.
Tang Y W, Gao J W, Liu X Y. Food Chem., 2016, 201(15): 72-79.
Kong D X, Jiang L L, Liu Y J. Talanta, 2017, 174(1): 436-443.
Yin Z Q, Chai T T, Mu P Q. J. Chromatogr. A, 2016, 1463(9): 49-59.
Casado N, Morante Z S, Perez Q D. J. Chromatogr. A, 2016, 1459(12): 24-37.
Zhang M Z, Wang M Z, Chen Z L, Fang J H, Fang M M, Liu J, Yu X P. Anal. Bioanal. Chem., 2009, 395(8): 2591-2599.
Hu L M, Luo K, Xia J, Xu G M, Wu C H, Han J J, Zhang G G, Liu M, Lai W H. Biosens. Bioelectron., 2017, 91(15):95-103.
Xu J Q, Xu S R, Xiao Y P, Chingin K, Lu H Y, Yan R H. Anal. Chem., 2017, 89(21): 11252-11258.
Li J, Qiao Q D, Zhuang J X, Wang C P. Chin. J. Chromatogr.(黎娟, 乔庆东, 庄景新, 王翠苹. 色谱), 2016, 34(2): 170-175.
Liu M, Liu R, Wang L Q. J. Instrum. Anal.(刘敏, 刘戎, 王立琦. 分析测试学报), 2012, 31(3): 290-295.
Wang L Q, He L M, Wang Z. Analyst, 2013, 138: 4579-4584.
Khaled A, Belinato J R, Pawliszyn J. Talanta, 2020, 217(1): 1-8.
Wei L L, Yan Y, Kang X J. Chem. J. Chin. Univ.(卫兰兰, 晏嫣, 康学军. 高等学校化学学报), 2017, 38(6):935-941.
Marrubini G, Dugheri S, Cappelli G, Arcangeli G, Mucci N, Appelblad P, Melzi C, Speltini A. Anal. Chim. Acta, 2020, 1119(4): 77-100.
Sun Q R, Li N, Guo L Q, Wang H T. Food Res. Dev.(孙清荣, 李楠, 郭礼强, 王洪涛. 食品研究与开发), 2016, 20(37): 154-159.
Nema T, Chanec Y, Ho P C. J. Pharm. Biomed., 2014, 87(18): 130-141.
Xu E Y, Gu X, Wang Y. Electrophoresis, 2015, 36(1): 124-134.
Wu M H, Wu R A, Zhang Z B. Electrophoresis, 2011, 32(1): 105-115.
Li N Z, Pang J L, Yang H H. Chem. Commun., 2011, 47(34): 9675-9677.
Hu Y, Li Y, Liu R. Talanta, 2011, 84(2): 462-470.
Wang R N. Preparation of Magnetic Molecularly Imprinted Metal Organic Framework MOF-5 and beta Agonists Speed Measurement Technology Research. Dalian:Liaoning Normal University(王日楠. 磁性分子印迹金属有机框架MOF-5的制备与β-受体激动剂速测技术研究. 大连: 辽宁师范大学), 2015.
Feng Y, Peng C Y, Zhang S W. Chin. J. Anal. Chem.(冯勇, 彭传云, 张少文. 分析化学), 2019, 47(6): 814-822.
Jobansson B L, Belew M, Eriksson S. J. Chromatogr. A, 2003, 1016 (1): 21-33.
Zauner G, Deelder A M, Wuhrer M. Electrophoresis, 2011, 32(24): 3456-3466.
Zhou S, Zhang F Y. Food Res. Dev.(周帅, 张飞云. 食品研究与开发), 2017, 38(11): 148-152.
Du W, Zhao G, Fu Q, Sun M, Zhou H Y, Chang C. Food Chem., 2014, 145: 789-795.
Tang Y W, Gao J W, Liu X Y, Lan J X, Gao X, Ma Y, Li M, Li J R. Food Chem., 2016, 201: 72-79.
Ding G L, Li D G, Qin J, Zhu J L, Wang B T, Geng Q Q, Guo M C, Punyapitak D, Cao Y S. Meat Sci., 2015,106: 55-60.
Xu Z G, Hu Y F, Hu Y L, Li G K. J. Chromatogr. A, 2010, 1217(22): 3612-3618.
0
浏览量
4
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构