浏览全部资源
扫码关注微信
1.中国科学技术大学 国家同步辐射实验室,安徽 合肥 230029
2.浙江光电子研究院,浙江 金华 321004
SONG Li,E-mail:song2012@ustc.edu.cn
纸质出版日期:2024-10-15,
收稿日期:2024-08-05,
修回日期:2024-09-18,
移动端阅览
曹宇杨,魏世强,蒋伟,Peter Joseph Chimtali,闫紫薇,周权,陈双明,宋礼.利用X射线光谱探测Mo2C@MoSe2异质结电极[J].分析测试学报,2024,43(10):1618-1625.
CAO Yu-yang,WEI Shi-qiang,JIANG Wei,Chimtali Peter Joseph,YAN Zi-wei,ZHOU Quan,CHEN Shuang-ming,SONG Li.X-ray Spectroscopically Probing Mo2C@MoSe2 Heterojunction Electrodes[J].Journal of Instrumental Analysis,2024,43(10):1618-1625.
曹宇杨,魏世强,蒋伟,Peter Joseph Chimtali,闫紫薇,周权,陈双明,宋礼.利用X射线光谱探测Mo2C@MoSe2异质结电极[J].分析测试学报,2024,43(10):1618-1625. DOI: 10.12452/j.fxcsxb.240805280.
CAO Yu-yang,WEI Shi-qiang,JIANG Wei,Chimtali Peter Joseph,YAN Zi-wei,ZHOU Quan,CHEN Shuang-ming,SONG Li.X-ray Spectroscopically Probing Mo2C@MoSe2 Heterojunction Electrodes[J].Journal of Instrumental Analysis,2024,43(10):1618-1625. DOI: 10.12452/j.fxcsxb.240805280.
由于具有高导电性和层状结构,二维MXene材料被认为是用于储能应用的有前景的候选材料。然而,MXene材料相对较低的稳定性和比容量限制了其进一步利用。该文通过一步硒化方法形成Mo₂C@MoSe₂异质结构来解决上述问题。同步辐射X射线光谱和高分辨透射电子显微镜(HRTEM)表征揭示了由原位生长在Mo
2
C MXene上的MoSe
2
组成的异质结构。电化学测试证明了异质结电极在5 A·g
-1
的高电流密度下具有289.06 mAh·g
-1
的优异倍率性能,并在1 A·g
-1
下经过900次循环后具有550 mAh·g
-1
的长循环稳定性。该研究采用X射线光谱分析直接阐明异质结构,为探测异质结构提供了一种有效的参考方法。
Due to their high electrical conductivity and layered structure,two dimensional MXene materials are regarded as promising can
didates for energy storage applications. However,the relatively low stability and specific capacity of MXene materials limit their further utilization. In this study,these issues are addressed using a heterostructure strategy via a one-step selenization method to form Mo₂C@MoSe₂. Synchrotron radiation X-ray spectroscopic and high-resolution transmission electron microscopy(HRTEM) characterizations revealed the heterostructure consisting of
in-situ
grown MoSe
2
on Mo
2
C MXene. Electrochemical tests proved the heterojunction electrode’s superior rate performance of 289.06 mAh·g
-1
at a high current density of 5 A·g
-1
and long cycling stability of 550 mAh·g
-1
after 900 cycles at 1 A·g
-1
. This work highlights the useful X-ray spectroscopic analysis to directly elucidate the heterojunction structure,providing an effective reference method for probing heterostructures.
X射线光谱MXene异质结X射线吸收精细结构谱(XAFS)锂离子电池
X-ray spectroscopicMXeneheterojunctionX-ray absorption fine structurelithium-ion batteries
Cao Y Y,Wei S Q,Zhou Q,Zhang P,Wang C,Zhu K,Xu W,Guo X,Yang X,Wang Y,Wu X,Chen S,Song L. 2D Mater.,2023,10(1):014001.
Yang Q,Huang Z,Li X,Liu Z,Li H,Liang G,Wang D,Huang Q,Zhang S,Chen S M,Zhi C. ACS Nano,2019,13(7):8275-8283.
Zhu S,Wang C D,Shou H,Zhang P,Wan P,Guo X,Yu Z,Wang W,Chen S M,Chu W,Song L. Adv. Mater.,2022,34(5):2108809.
Wang C D,Chen S M,Song L. Adv. Funct. Mater.,2020,30(47):2000869.
Näslund L Å,Mikkelä M H,Kokkonen E,Magnuson M. 2D Mater.,2021,8(4):045026.
Wang Q,Wang S,Guo X,Ruan L,Wei N,Ma Y,Li J,Wang M,Li W,Zeng W. Adv. Electron. Mater.,2019,5(12):1900537.
Liu P,Xiao P,Lu M,Wang H,Jin N,Lin Z. Chin. Chem. Lett.,2022,33(5):2213-2762.
Naguib M,Kurtoglu M,Presser V,Lu J,Niu J,Heon M,Hultman L,Gogotsi Y,Barsoum M W. Adv. Mater.,2011,23(37):4248-4253.
Xie Y,Naguib M,Mochalin V N,Barsoum M W,Gogotsi Y,Yu X,Nam K W,Yang X Q,Kolesnikov A I,Kent P R C. J. Am. Chem. Soc.,2014,136(17):6385-6394.
Wang C D,Xie H,Chen S M,Ge B,Liu D,Wu C,Xu W J,Chu W,Babu G,Ajayan P M,Song L. Adv. Mater.,2018,30(32):1802525.
Li J,Wang H,Xiao X. Energy Environ. Mater.,2020,3(3):306-322.
Liu Y,Jiang Y,Hu Z,Peng J,Lai W,Wu D,Zuo S,Zhang J,Chen B,Dai Z,Yang Y,Huang Y,Zhang W,Zhao W,Zhang W,Wang L,Chou S. Adv. Funct. Mater.,2021,31(8):2008033.
Du Y T,Kan X,Yang F,Gan L Y,Schwingenschlögl U. ACS Appl. Mater. Interfaces,2018,10(38):32867-32873.
Abbasi N M,Xiao Y,Zhang L,Peng L,Duo Y,Wang L,Yin P,Ge Y,Zhu H,Zhang B,Xie N,Duan Y,Wang B,Zhang H. J. Mater. Chem. C,2021,9(27):8395-8465.
Ali A,Hantanasirisakul K,Abdala A,Urbankowski P,Zhao M Q,Anasori B,Gogotsi Y,Aïssa B,Mahmoud K A. Langmuir,2018,34(38):11325-11334.
Das P,Fu Q,Bao X,Wu Z S. J. Mater. Chem. A,2018,6(44):21747-21784.
Ressler T. J. Synchrotron Radiat.,1998,5(2):118-122.
Wei S Q,Wang C D,Chen S M,Zhang P,Zhu K,Wu C,Song P,Wen W,Song L. Adv. Energy Mater.,2020,10(12):1903712.
Pat S,Korkmaz Ş. 2D Mater.,2021,8(4):045013.
Zhu S,Wang C D,Shou H,Zhang P,Wan P,Guo X,Yu Z,Wang W,Chen S M,Chu W. Adv. Mater.,2022,34(5):2108809.
Wang C D,Shou H,Chen S M,Wei S Q,Lin Y,Zhang P,Liu Z,Zhu K,Guo X,Wu X,Ajayan P M,Song L. Adv. Mater.,2021,33(27):2101015.
Zong H,Hu L,Wang Z,Yu K,Gong S,Zhu Z. CrystEngComm,2020,22(36):5995-6002.
Zhang L,Zhu J,Wang Z,Zhang W. Int. J. Hydrogen Energy,2020,45(38):19246-19256.
Liang Y,Wang H,Diao P,Chang W,Hong G,Li Y,Gong M,Xie L,Zhou J,Wang J,Regier T Z,Wei F,Dai H. J. Am. Chem. Soc.,2012,134(38):15849-15857.
Guo X,Wang C D,Wang W,Zhou Q,Xu W J,Zhang P,Wei S Q,Cao Y Y,Zhu K,Liu Z,Yang X,Wang Y X,Wu X,Song L,Chen S M,Liu X. Nano Res. Energy,2022,1(3):9120026.
Cao Y Y,Wei S Q,Xia Y J,Zhou Q,Wang Y X,Xu W J,Wang C D,Chen S M,Song L. J. Mater. Chem. A,2024. DOI:10.1039/D4TA02102Ahttp://dx.doi.org/10.1039/D4TA02102A.
Wei S Q,Zhang P,Xu W J,Chen S M,Xia Y J,Cao Y Y,Zhu K,Cui Q,Wen W,Wu C,Wang C D,Song L. J. Am. Chem. Soc.,2023,145(19):10681-10690.
Wang Y X,Wei S Q,Qi Z H,Chen S M,Zhu K,Ding H,Cao Y Y,Zhou Q,Wang C D,Zhang P,Guo X,Yang X,Wu X,Song L. PNAS,2023,120(13):2217208120.
Caramazza S,Marini C,Simonelli L,Dore P,Postorino P. J. Phys.:Condens. Matter,2016,28(32):325401.
Zhang P,Wang C D,Wei S Q,Shou H,Zhu K,Cao Y Y,Xu W J,Guo X,Wu X,Chen S M,Song L. ACS Appl. Mater. Interfaces,2021,13(51):61258-61266.
Yuan K,Hao P,Zhou Y,Hu X,Zhang J,Zhong S. Phys. Chem. Chem. Phys.,2022,24(22):13713-13719.
Liang K,Wu T,Misra S,Dun C,Husmann S,Prenger K,Urban J J,Presser V,Unocic R R,Jiang D E,Naguib M. Adv. Sci.,2024,11(31):2402708.
Meija R,Lazarenko V,Rublova Y,Felsharuk A,Andzane J,Gogotsi O,Baginskiy I,Zahorodna V,Dutovs A,Voikiva V,Lohmus R,Viksna A,Erts D. Mater. Chem. Front.,2024,8(6):1651-1664.
0
浏览量
70
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构