浏览全部资源
扫码关注微信
1.南京航空航天大学 材料科学与技术学院,江苏 南京 211106
2.南京航空航天大学 核分析技术研究所, 江苏 南京 211106
3.南京工业大学 电气工程与控制科学学院,江苏 南京 211816
4.国家核安保技术中心,北京 102401
程 璨,博士,副教授,研究方向:中子诱导核信息分析技术,E-mail:cheng_can@nuaa.edu.cn
贾文宝,博士,教授,研究方向:中子诱导核信息分析技术,E-mail:jiawb@nuaa.edu.cn
纸质出版日期:2024-10-15,
收稿日期:2024-07-31,
修回日期:2024-08-16,
移动端阅览
张岩,程伟,李多宏,程璨,贾文宝.基于EJ-301液闪的快中子多重性测量装置对Pu样品质量的测量研究[J].分析测试学报,2024,43(10):1658-1663.
ZHANG Yan,CHENG Wei,LI Duo-hong,CHENG Can,JIA Wen-bao.Measurement Study of Pu Sample Mass Using a Fast Neutron Multiplicity Counting System Based on EJ-301 Liquid Scintillator[J].Journal of Instrumental Analysis,2024,43(10):1658-1663.
张岩,程伟,李多宏,程璨,贾文宝.基于EJ-301液闪的快中子多重性测量装置对Pu样品质量的测量研究[J].分析测试学报,2024,43(10):1658-1663. DOI: 10.12452/j.fxcsxb.240731266.
ZHANG Yan,CHENG Wei,LI Duo-hong,CHENG Can,JIA Wen-bao.Measurement Study of Pu Sample Mass Using a Fast Neutron Multiplicity Counting System Based on EJ-301 Liquid Scintillator[J].Journal of Instrumental Analysis,2024,43(10):1658-1663. DOI: 10.12452/j.fxcsxb.240731266.
快中子多重性测量技术(FNMC)可以对保密封装或者非固定状态的核裂变材料的质量进行无损检测,且不需要标准样品刻度,在核保障领域,特别是核材料衡算方面具有重要的意义。该文研究了EJ-301液体闪烁体探测器组成的快中子多重性测量装置对Pu样品质量测量的准确性。利用Geant4模拟软件搭建了1×6 EJ-301液体闪烁体探测器组成的快中子多重性测量系统,并对Pu-240自发裂变中子源的方向、能量、时间分布进行了模拟。通过对不同质量的Pu-240源进行多重性质量计算,得到其相对质量偏差均在10%以下,但随着裂变材料质量的增加,相对质量偏差也相应增加。对钚金属进行多重性测量,得到其平均相对质量偏差为15.5%左右,偏差相对于模拟结果较大的原因可能由
n
/
γ
甄别误差导致。该结果比中子多重性测量装置的相对质量偏差降低了16%。结果表明,基于EJ-301液闪的快中子多重性测量装置能够较好地实现对钚金属的质量测量。
Fast neutron multiplicity counting(FNMC) is a non-destructive technique for assessing the mass of fissile materials in sealed or unconsolidated states,without standard sample calibration. It holds significant importance in nuclear safeguards,particularly in nuclear material accountancy. This study focuses on the accuracy of Pu sample mass measurements using a fast neutron multiplicity measurement system composed of EJ-301 liquid scintillator detectors. A measurement system consisting of 1×6 EJ-301 detectors was constructed using Geant4 simulation software to simulate the direction,energy,and timing distributions of neutrons from spontaneous fission of Pu-240 sources. Multiplicity mass calculations were performed on different masses of Pu-240 sources,revealing relative mass deviations consistently below 10%. However,deviations increase proportionally with the mass of fissile material. Experimental measurements of plutonium metal yielded a average relative mass deviation of approximately 15.5%,potentially attributed to
n
/
γ
discrimination errors compared to simulation results. A 16% reduction in relative mass deviation was observed when comparing the results of the neutron multiplicity measurement device. Overall,the results demonstrate that the fast neutron multiplicity measurement system based on EJ-301 liquid scintillators effectively achieves mass measurements of plutonium metal.
快中子多重性测量技术液体闪烁体Geant4 模拟核材料质量
fast neutron multiplicity countingliquid scintillatorGeant4 simulationnuclear materials mass
Shin T H,Fulvio A D,Clarke S D,Chichester D L,Pozzi S A. Nucl. Instrum. Methods Phys. Res. A,2018,915:110-115.
Nakae L F,Chapline G F,Glenn A M,Kerr P L,Kim K S,Ouedraogo S A,Prasad M K,Sheets S A,Snyderman N J,Verbeke J M,Wurtz R E. Int. J. Mod. Phys.:Conf. Ser.,2014,27:1460140.
Yi L F. Simulation Study of Neutron Multiplicity Measurement and Analysis Methods. Hengyang:University of South China(易凌帆.中子多重性测量分析方法仿真研究. 衡阳:南华大学),2016.
Li S F,Qiu S Z,Zhang Q H,Huo Y G,Lin H T. Appl. Radiat. Isot.,2016,110:53-58.
Dolan J L,Flaska M,Poitrasson-Riviere A,Enqvist A,Peerani P,Chichester D L,Pozzi S A. Nucl. Instrum. Methods Phys. Res. A,2014,763:565-574.
Chichester D L,Thompson S J,Kinlaw M T,Johnson J T,Dolan J L,Flaska M,Pozzi S A. Nucl. Instrum. Methods Phys. Res. A,2015,784:448-454.
Fulvio A D,Shin T H,Jordan T,Sosa C,Ruch M L,Clarke S D,Chichester D L,Pozzi S A. Nucl. Instrum. Methods Phys. Res. A,2017,855:92-101.
Fulvio A D,Shin T H,Basley A,Swenson C,Sosa C,Clarke S D,Sanders J,Watson S M,David L C,Pozzi S A. Nucl. Instrum. Methods Phys. Res. A,2018,907:248-257.
Hou S X,Luo J J. Ann. Nucl. Energy,2021:156:108219.
Heger G,Dubi C,Ocherashvili A,Beck A,Pedersen B,Gilad E. Nucl. Instrum. Methods Phys. Res. A,2018,901:40-45.
Frame K,Clay W,Elmont T,Esch E,Karpius P,MacArthur D,McKigney E,Santi P,Smith M,Thron J,Williams R. Nucl. Instrum. Methods Phys. Res. A,2007,579(1):192-195.
Hua M Y,Bravo C A,MacDonald A T,Hutchinson J D,McKenzie G E,Grove T J,Goda J M,McSpaden A T,Clarke S D,Pozzi S A. EPJ Web Conf.,2021,247:09025.
Zhang Q H,Yang J Q,Li X S,Li S F,Hou S X,Su X H,Zhou M,Zhuang L,Lin H T. Appl. Radiat. Isot.,2019,152:45-51.
Wang J,Galonsky A,Kruse J J,Zecher P D,Deák F,Horváth Á,Kiss Á,Seres Z,Ieki K,Iwata Y. Nucl. Instrum. Methods Phys. Res. A,1997,397(2/3):380-390.
Song Y S,Ye Y L,Ge Y C,Lü L H,Faisal Q,Jiang D X,Hua H,Zheng T,Li Z H,Li X Q,Lou J L,Lu F,Fan F Y,Cao Z X,Li Q T,Xiao J. Chin. Phys. C,2009,33(10):860-865.
Shin T H,Hua M Y,Marcath M J,Chichester D L,Pázsit I,Fulvio A D,Clarke S D,Pozzi S A. Nucl. Sci. Eng.,2017,188(3):246-269.
Li S F,Qiu S Z,Zhang Q H,Huo Y G,Liu L M. Int. Conf. Nucl. Eng.,2016,http://dx.doi.org/10.1115/ICONE24-61015http://dx.doi.org/10.1115/ICONE24-61015.
Brown D A,Chadwick M B,Capote R,Kahler A C,Trkov A. Nucl. Data Sheets,2018,148:1-142.
Sun S Q. Study of Neutron Multiplicity Measurement Technology for Nuclear Material. Harbin:Harbin Engineering University(孙诗奇. 核材料中子多重性测量技术研究.哈尔滨:哈尔滨工程大学),2020.
0
浏览量
40
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构