浏览全部资源
扫码关注微信
1.上海大学 理学院 化学系,上海 200444
2.中国科学院上海高等研究院 上海同步辐射光源,上海 201204
3.Kotebe教育大学 化学系,埃塞俄比亚 亚的斯亚贝巴 31248
4.中国科学院 上海应用物理研究所,上海 201800
LEI Qi,PhD,Research interest:nuclear technology and application,E-mail:leiq@sari.ac.cn
WEN Wen,PhD,Professor,Research interest:nuclear technology and application,E-mail:wenw@sari.ac.cn
纸质出版日期:2024-10-15,
收稿日期:2024-07-18,
修回日期:2024-09-04,
移动端阅览
曹慧丽,高梅,Andebet G. Tamirat,赵宏滨,周兴泰,黄宇营,雷琦,文闻.一种用于同步辐射X射线衍射熔盐原位研究的新型高温装置[J].分析测试学报,2024,43(10):1608-1617.
CAO Hui-li,GAO Mei,Tamirat Andebet G.,ZHAO Hong-bin,ZHOU Xing-tai,HUANG Yu-ying,LEI Qi,WEN Wen.(2024PVA0097);National Key Research and Development Program of China(2017YFA0403000,2017YFA0402800);National Natural Science Foundation of China(U1932201,U1732121)[J].Journal of Instrumental Analysis,2024,43(10):1608-1617.
曹慧丽,高梅,Andebet G. Tamirat,赵宏滨,周兴泰,黄宇营,雷琦,文闻.一种用于同步辐射X射线衍射熔盐原位研究的新型高温装置[J].分析测试学报,2024,43(10):1608-1617. DOI: 10.12452/j.fxcsxb.240718239.
CAO Hui-li,GAO Mei,Tamirat Andebet G.,ZHAO Hong-bin,ZHOU Xing-tai,HUANG Yu-ying,LEI Qi,WEN Wen.(2024PVA0097);National Key Research and Development Program of China(2017YFA0403000,2017YFA0402800);National Natural Science Foundation of China(U1932201,U1732121)[J].Journal of Instrumental Analysis,2024,43(10):1608-1617. DOI: 10.12452/j.fxcsxb.240718239.
介绍了一种用于同步辐射X射线衍射熔盐原位研究的新型高温旋转装置的设计和应用,有助于进一步研究各种结构材料与熔盐之间的相互作用。该装置能够准确地检测到高温实验中的每一个相变,包括腐蚀等强烈反应过程。实验时,将熔盐(如氯化物或氟化物)与结构材料置于石英或氮化硼毛细管中,并加热至高温,即可连续收集X射线衍射图谱。在熔融ZnCl
2
刻蚀Ti
3
AlC
2
的过程中,由于Zn
2+
具有较大的原子序数和离子半径,可以通过衍射峰强的变化和六方晶格c轴方向晶格参数的膨胀,清楚地观察到刻蚀过程的取代反应。另外,还研究了GH3535合金在FLiNaK熔盐中的高温腐蚀过程,有助于优化GH3535合金应用在熔盐堆时的稳定性。这种高温仪器完全兼容X射线衍射和拉曼技术的组合使用,可以提供体相和表面两方面的结构信息。目前,该高温装置已面向用户开放,并广泛应用于上海同步辐射光源BL14B1线站。
This study demonstrates the design and application of a novel high temperature rotatory apparatus for in-situ synchrotron X-ray diffraction studies of molten salts,facilitating investigation into the interaction between various structural materials and molten salts. The apparatus enables accurate detection of every phase change during high-temperature experiments,including strong reaction processes like corrosion. Molten salts,such as chlorides or fluorides,together with the structure materials,are inserted into either quartz or boron nitride capillaries,where X-ray diffraction pattern can be continuously collected,as the samples are heated to high temperature. The replacement reaction,when molten ZnCl
2
are etching Ti
3
AlC
2
,can be clearly observed through changes in diffraction peak intensity as well as expansion in c-axis lattice parameter of the hexagonal matrix,due to the larger atomic number and ionic radius of Zn
2+
. Furthermore,we investigated the high-temperature corrosion process when GH3535 alloy is in FLiNaK molten salt,and can help to optimize its stability for potential applications in molten salt reactor. Additionally,this high temperature apparatus is fully compatible with the combined usage of X-ray diffraction and Raman technique,providing both bulk and surface structural information. This high temperature apparatus has been open to users and is extensively used at BL14B1 beamline of the Shanghai Synchrotron Radiation Facility.
原位X射线衍射旋转式微衍射仪旋转式高温装置熔盐
in-situ X-ray diffractionrotary micro-diffractometerrotary high-temperature apparatusmolten salt
Widjonarko N. Coatings,2016,6(4):54.
Jiang M H,Yang X,Xu H J,Zhao Z T,Ding H. Chin. Sci. Bull.,2009,54(22):4171-4181.
Gjørup F H,Ahlburg J V,Christensen M. Rev. Sci. Instrum.,2019,90(7):073902.
Zhang Y Z,Wang X L,Chen X L,Xiao D W. Rare Met. Mater. Eng.,2015,44(5):1094-1098.
Kaboli S,Burnley P C. Mater. Sci. Eng. A,2019,739:99-104.
Liu X F,Fechler N,Antonietti M. Chem. Soc. Rev.,2013,42(21):8237.
Einarsrud M A,Grande T. Chem. Soc. Rev.,2014,43(7):2187-2199.
Xu C Y,Zhang Q,Zhang H,Zhen L,Tang J,Qin L C. J. Am. Chem. Soc.,2005,127 (33):11584-11585.
Mao Y,Banerjee S,Wong S S. J. Am. Chem. Soc.,2003,125(51):15718-15719.
Li L,Deng J,Chen J,Sun X,Yu R,Liu G,Xing X. Chem. Mater.,2009,21(7):1207-1213.
Li S,Song J,Che Y,Jiao S,He J,Yang B. Energy Environ. Mater.,2023,6(2):e12339.
Gupta S K,Mao Y. Prog. Mater. Sci.,2021,117:100734.
Wang F,Wang S,Tian F,Wang F,Xia X,Zhang Q,Pang Z,Yu X,Li G,Hsu H Y,Hu S,Ji L,Xu Q,Zhao Y,Zou X,Lu X. Chem. Eng. J.,2023,470:144185.
Lou Z,He M,Wang R,Qin W,Zhao D,Chen C. Inorg. Chem.,2014,53(4):2053-2057.
Mao Y,Tran T,Guo X,Huang J Y,Shih C K,Wang K L,Chang J P. Adv. Funct. Mater.,2009,19(5):748-754.
Mao Y,Park T,Zhang F,Zhou H,Wong S S. Small,2007,3(7):1122-1139.
Hu Z,Xiao X,Jin H,Li T,Chen M,Liang Z,Guo Z,Li J,Wan J,Huang L,Zhang Y,Feng G,Zhou J. Nat. Commun.,2017,8(1):15630.
Le Blanc D. Nucl. Eng. Des.,2010,240(6):1644-1656.
Serp J,Allibert M,Beneš O,Delpech S,Feynberg O,Ghetta V,Heuer D,Holcomb D,Ignatiev V,Kloosterman J L,Luzzi L,Merle-Lucotte E,Uhlíř J,Yoshioka R,Zhimin D. Prog. Nucl. Energy,2014,77:308-319.
Wang Y,Zhang S,Ji X,Wang P,Li W. Int. J. Electrochem. Sci.,2018,13(5):4891-4900.
Guo S,Zhang J,Wu W,Zhou W. Prog. Mater. Sci.,2018,97:448-487.
Zhu H M,Li B C,Zhu J Y,Qiu C J,Tang Z F. Mater. Rep.,2019,33(11):1813-1820.
Olson L C,Ambrosek J W,Sridharan K,Anderson M H,Allen T R. J. Fluor. Chem.,2009,130(1):67-73.
Delpech S,Cabet C,Slim C,Picard G S. Mater. Today,2010,13(12):34-41.
Ren W,Muralidharan G,Wilson D,Holcomb D. Proceedings of the ASME 2011 Pressure Vessels & Piping Division Conference. Baltimore,USA,2011.
Sun Z M. Int. Mater. Rev.,2011,56(3):143-166.
Tallman D J. On the Potential of MAX Phases for Nuclear Applications. Philadelphia:Drexel University,2015.
Yang X,Liu M,Gao Y,Zhang D,Feng S,Liu H,Yu G,Wu G,Wang M,Zhou X,Xia H,Huai P,Sham T K,Wang J,Guo J. Corros. Sci.,2016,103:165-172.
Engler P,Santana M W,Mittleman M L,Balazs D. Thermochim. Acta,1988,130:309-318.
Yang T Y,Wen W,Ying G Z,Li X L,Gao M,Gu Y L,Li L,Liu Y,Lin H,Zhang X M,Zhao B,Liu T K,Yang Y G,Li Z,Zhou X T,Gao X Y. Nucl. Sci. Tech.,2015,26(2):5-9.
Toby B H. J. Appl. Crystallogr.,2005,38(6):1040-1041.
Toby B H,Von Dreele R B. J. Appl. Crystallogr.,2013,46(2):544-549.
Gražulis S,Chateigner D,Downs R T,Yokochi A F T,Quirós M,Lutterotti L,Manakova E,Butkus J,Moeck P,Le Bail A. J. Appl. Crystallogr.,2009,42(4):726-729.
Li M,Lu J,Luo K,Li Y B,Chang K K,Chen K,Zhou J,Rosen J,Hultman L,Eklund P,Persson P O Å,Du S Y,Chai Z F,Huang Z R,Huang Q. J. Am. Chem. Soc.,2019,141(11):4730-4737.
Pang S Y,Wong Y T,Yuan S G,Liu Y,Tsang M K,Yang Z B,Huang H T,Wong W T,Hao J H. J. Am. Chem. Soc.,2019,141(24):9610-9616.
Wei S Q,Zhang P J,Xu W J,Chen S M,Xia Y J,Cao Y Y,Zhu K F,Cui Q L,Wen W,Wu C Q,Wang C D,Song L. J. Am. Chem. Soc.,2023,145(19):10681-10690.
Li Y B,Shao H,Lin Z F,Lu J,Liu L Y,Duployer B,Persson P O Å,Eklund P,Hultman L,Li M,Chen K,Zha X H,Du S Y,Rozier P,Chai Z,Raymundo-Piñero E,Taberna P L,Simon P,Huang Q. Nat. Mater.,2020,19(8):894-899.
Lei Q,Zhang X M,Gao M,Wen W,Jia Y Y,Liu H J,Li Y H,Liu J Z,Zhou X T. Corros. Sci.,2021,182:109289.
Li X L,He S M,Zhou X T,Huai P,Li Z J,Li A G,Yu X H. J. Nucl. Mater.,2015,464:342-345.
Liu H Z,Klein W,Sani A,Jansen M. Phys. Chem. Chem. Phys.,2004,6(5):881-883.
Davies R J,Burghammer M,Riekel C. J. Synchrotron Radiat.,2005,12(6):765-771.
Ran S,Fang D,Sics I,Toki S,Hsiao B S,Chu B. Rev. Sci. Instrum.,2003,74 (6):3087-3092.
Bryant G K,Gleeson H F,Ryan A J,Fairclough J P A,Bogg D,Goossens J G P,Bras W. Rev. Sci. Instrum.,1998,69(5):2114-2117.
Dias A,Moreira R L. J. Raman Spectrosc.,2010,41(6):698-701.
Wang M Y,Hao X K,Liu X S,Tian J J,Kang C Y,Zhang W F. Surf. Interfaces,2021,26:101374.
Hu Y Z,Huang Y F,Wang X H,Ding Y B,Huang J. Mater. Chem. Phys.,2018,213:389-399.
Chen S F,Cao Z S,Fu X L. Mater. Chem. Phys.,2013,142 (2/3):748-755.
Saiduzzaman M,Yanagida S,Takei T,Kumada N,Ogawa K,Moriyoshi C,Kuroiwa Y,Kawaguchi S. Inorg. Chem.,2018,57(15):8903-8908.
0
浏览量
54
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构