浏览全部资源
扫码关注微信
1.中国科学院生态环境研究中心,环境化学与生态毒理学国家重点实验室,北京 100085
2.国科大杭州高等 研究院 环境学院,浙江 杭州 310024
3.中国科学院大学,北京 100049
4.浙江省生态环境科学 设计研究院,浙江省环境污染控制技术研究重点实验室,浙江 杭州 310007
史亚利,博士,研究员,研究方向:新污染物分析方法和环境行为,E-mail:shiyali@rcees.ac.cn
纸质出版日期:2024-12-15,
收稿日期:2024-06-29,
修回日期:2024-07-30,
移动端阅览
张余健,张峰,张许文琦,史亚利,蔡亚岐.全氟或多氟烷基化合物的总氧化前体物分析方法研究和应用[J].分析测试学报,2024,43(12):1863-1872.
ZHANG Yu-jian,ZHANG Feng,ZHANG Xu-wen-qi,SHI Ya-li,CAI Ya-qi.Research and Application of Total Oxidizable Precursors Assay for Per- and Polyfluoroalkyl Substances[J].Journal of Instrumental Analysis,2024,43(12):1863-1872.
张余健,张峰,张许文琦,史亚利,蔡亚岐.全氟或多氟烷基化合物的总氧化前体物分析方法研究和应用[J].分析测试学报,2024,43(12):1863-1872. DOI: 10.12452/j.fxcsxb.240629179.
ZHANG Yu-jian,ZHANG Feng,ZHANG Xu-wen-qi,SHI Ya-li,CAI Ya-qi.Research and Application of Total Oxidizable Precursors Assay for Per- and Polyfluoroalkyl Substances[J].Journal of Instrumental Analysis,2024,43(12):1863-1872. DOI: 10.12452/j.fxcsxb.240629179.
总氧化前体物分析(TOP assay)是评估全氟或多氟烷基化合物(PFAS)前体物总量的分析方法,但因基质干扰和超短链PFAS(C
<
4)检测缺失存在稳定性差和总量被低估等问题,有待进一步优化。该文考察了热活化温度、热活化时间、共存有机物、氧化剂及碱用量对TOP法氧化效率的影响,最终确定实际水样分析条件为在60 mmol/L K
2
S
2
O
8
、150 mmol/L NaOH下85 ℃氧化4 h。在缩短1/3氧化时间的前提下,实现了黄腐酸质量浓度为250 mg/L的水样中PFAS前体物的彻底氧化,且实际应用效果良好。此外,为准确评估PFAS前体物总量,应考虑更多全氟烷基酸浓度的变化,例如将超短链PFAS纳入氟调聚磺酸产物评估,可缩小6.1%~58.1%的产率缺失;将与全氟磺酰胺具有相同碳数的全氟烷基磺酸纳入其产物进行评估,产率缺失缩小6.3%~10.0%。
The total oxidizable precursor(TOP) assay is an analytical method for evaluating the total amount of precursors of per- and polyfluoroalkyl substances(PFAS). However,due to the matrix interference and non-analysis of ultra-short chain PFAS(C
<
4),there are still some problems in the current TOP assay,such as poor stability and underestimation of the total amount of precursors,which needs further study. Therefore,our research investigated the effects of some critical parameters in the TOP assay,such as thermal activation temperature and time,the amount of oxidant and alkali,and the coexistence of organic compounds,on the oxidation efficiency of typical precursors. The oxidation conditions for real water samples are optimized as follows. The concentrations of K
2
S
2
O
8
and NaOH were at 60 mmol/L and 150 mmol/L,respectively. The oxidation temperature and time were 85 ℃ and 4 hours. Under the premise of shortening one-third of the oxidation time,the good performance was obtained for the oxidation of PFAS precursors in water samples containing 250 mg/L fulvic acid. In addition,we can make a conclusion that as many PFAS as possible should be considered as the degradation products in order to accurately evaluate the total amount of PFAS precursors. For example,if the ultra-short chain PFAS were included as the target compounds,the gap of conversion yield could be reduced by 6.1%-58.1% for fluorotelomer sulfonate. Similarly,if the perfluoroalkyl sulfonic acids with the same carbon
number as perfluorosulfonamides was included into their degradation products for the evaluation,the yield loss was reduced by 6.3%-10.0%.
PFAS前体物TOP氧化黄腐酸超短链PFAS
PFAS precursorsTOP oxidationfulvic acidultra-short chain PFAS
Evich M G,Davis M J B,Mccord J P,Acrey B,Awkerman J A,Knappe D R U,Lindstrom A B,Speth T F,Tebes-Stevens C,Strynar M J,Wang Z,Weber E J,Henderson W M,Washington J W. Science,2022,375(6580):eabg9065.
Rahman M F,Peldszus S,Anderson W B. Water Res.,2014,50:318-340.
Yang C,Li P F,Wang Y,Shi Y L. J. Instrum. Anal.(杨晨,李鹏飞,王媛,史亚利. 分析测试学报),2024,43(8):1227-1234.
Balgooyen S,Remucal C K. Environ. Sci. Technol.,2023,57(1):244-254.
Jiao X C,Shi Q Y,Gan J. Crit. Rev. Environ. Sci. Technol.,2021,51(23):2745-2776.
Houtz E F,Sedlak D L. Environ. Sci. Technol.,2012,46(17):9342-9349.
Liu J X,Avendaño S M. Environ. Int.,2013,61:98-114.
Houtz E F,Higgins C P,Field J A,Sedlak D L. Environ. Sci. Technol.,2013,47(15):8187-8195.
Dhore R,Murthy G S. Bioresour. Technol.,2021,341:125808.
Buck R C,Franklin J,Berger U,Conder J M,Cousins I T,De Voogt P,Jensen A A,Kannan K,Mabury S A,Van Leeuwen S P J. Integr. Environ. Assess.,2011,7(4):513-541.
Ateia M,Chiang D R,Cashman M,Acheson C. Environ. Sci. Technol. Lett.,2023,10(4):292-301.
Pickard H M,Ruyle B J,Thackray C P,Chovancova A,Dassuncao C,Becanova J,Vojta S,Lohmann R,Sunderland E M. Environ. Sci. Technol.,2022,56(22):15573-15583.
Dubocq F,Thanh W,Yeung L W Y,Sjoberg V,Karrman A. Environ. Sci. Technol.,2020,54(1):245-254.
Hori H,Yamamoto A,Hayakawa E,Taniyasu S,Yamashita N,Kutsuna S. Environ. Sci. Technol.,2005,39(7):2383-2388.
Goeckener B,Fliedner A,Ruedel H,Badry A,Koschorreck J. Environ. Sci. Technol.,2022,56(1):208-217.
Zhu H K,Kannan K. Environ. Pollut.,2020,265:114940.
Martin D,Munoz G,Mejia-Avendaño S,Duy S V,Yao Y,Volchek K,Brown C E,Liu J X,Sauvé S. Talanta,2019,195:533-542.
Lasee S,Mcdermett K,Kumar N,Guelfo J,Payton P,Yang Z,Anderson T A. J. Hazard. Mater. Lett.,2022,3:100067.
Göckener B,Weber T,Rüdel H,Bücking M,Kolossa-Gehring M. Environ. Int.,2020,145:106123.
Cioni L,Nikiforov V,Coelho A,Sandanger T M,Herzke D. Environ. Int.,2022,170:107656.
Jia Y,Shan C,Fu W,Wei S,Pan B. Water Res.,2023,242:120289.
Ruyle B J,Thackray C P,Mccord J P,Strynar M J,Mauge-Lewis K A,Fenton S E,Sunderland E M. Environ. Sci. Technol. Lett.,2021,8(1):59-65.
Zhang C,Hao S,Gonda N,Zhi Y,Strathmann T J,Schaefer C E,Higgins C P. J. Hazard. Mater.,2024,466:133591.
Neuwald I J,Huebner D,Wiegand H L,Valkov V,Borchers U,Noedler K,Scheurer M,Hale S E,Arp H P H,Zahn D. Environ. Sci. Technol.,2022,56(10):6380-6390.
Kim J,Xin X,Mamo B T,Hawkins G L,Li K,Chen Y,Huang Q,Huang C H. ACS ES&T Water,2022,2(8):1380-1390.
Wang B,Yao Y,Chen H,Chang S,Tian Y,Sun H. Sci. Total Environ.,2020,705:135832.
Zhang C H,Hopkins Z R,Mccord J,Strynar M J,Knappe D R U. Environ. Sci. Technol. Lett.,2019,6(11):662-668.
Taniyasu S,Kannan K,Yeung L W Y,Kwok K Y,Lam P K S,Yamashita N. Anal. Chim. Acta,2008,619(2):221-230.
Li P F,Wang Y,Yang C,Shi Y L,Cui J S. Environ. Sci.(李鹏飞,王媛,杨晨,史亚利,崔建升. 环境科学),2023,44(3):1593-1601.
Johnson R L,Tratnyek P G,Johnson R O B. Environ. Sci. Technol.,2008,42(24):9350-9356.
Trenfield M A,Ng J C,Noller B N,Markich S J,Van Dam R A. Environ. Sci. Technol.,2011,45(7):3082-3089.
Trenfield M A,Ng J C,Noller B,Markich S J,Van Dam R A. Ecotoxicology,2012,21(4):1013-1023.
GB 18918-2002. Discharge Standrd of Pollutants for Municipal Wastewater Treatment Plant. National Standards of the People's Republic of China(城镇污水处理厂污染物排放标准. 中华人民共和国国家标准).
Goeckener B,Fliedner A,Weinfurtner K,Ruedel H,Badry A,Koschorreck J. Sci. Total Environ.,2023,898:165425.
Tsou K,Antell E,Duan Y,Olivares C I,Yi S,Alvarez-Cohen L,Sedlak D L. ACS ES&T Water,2023,3(9):2996-3003.
0
浏览量
89
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构