浏览全部资源
扫码关注微信
1.中国计量科学研究院,北京 100029
2.天津理工大学 环境科学与安全工程学院,天津 300382
宋善军,博士,副研究员,研究方向:新污染物化学计量,E-mail:songsj@nim.ac.cn
纸质出版日期:2024-08-15,
收稿日期:2024-05-28,
修回日期:2024-06-20,
移动端阅览
韩卓,刘禹慧,魏晓菲,李彭辉,宋善军.热重分析/红外光谱-气相色谱-质谱联用技术测定松针中6种常见微塑料[J].分析测试学报,2024,43(08):1249-1256.
HAN Zhuo,LIU Yu-hui,WEI Xiao-fei,LI Peng-hui,SONG Shan-jun.Determination of Six Microplastics in Pine Needles by TGA/FTIR-GC-MS[J].Journal of Instrumental Analysis,2024,43(08):1249-1256.
韩卓,刘禹慧,魏晓菲,李彭辉,宋善军.热重分析/红外光谱-气相色谱-质谱联用技术测定松针中6种常见微塑料[J].分析测试学报,2024,43(08):1249-1256. DOI: 10.12452/j.fxcsxb.24052876.
HAN Zhuo,LIU Yu-hui,WEI Xiao-fei,LI Peng-hui,SONG Shan-jun.Determination of Six Microplastics in Pine Needles by TGA/FTIR-GC-MS[J].Journal of Instrumental Analysis,2024,43(08):1249-1256. DOI: 10.12452/j.fxcsxb.24052876.
该研究基于热重分析/红外光谱-气相色谱-质谱(TGA/FTIR-GC-MS)联用技术建立了可用于聚乙烯(PE)、聚丙烯(PP)、聚苯乙烯(PS)、聚氯乙烯(PVC)、聚对苯二甲酸乙二酯(PET)、聚碳酸酯(PC)6种常见微塑料的定性定量检测方法。方法检出限为0.03~1.11 μg,相对标准偏差为4.0%~12%(
n
=3),加标回收率为80.4%~93.3%。应用所建立的方法对来自武夷山、青海湖、大兴安岭等12个采样点的松针样品进行分析,得到6种微塑料的浓度范围为0.01~3.15 μg∙mg
-1
。此外,样品中6种塑料均有检出,检出率依次为PE、PP和PS(100%)、PET(92%)、PC(60%)、PVC(8%)。该方法可为我国微塑料环境污染评估及环境行为研究提供技术支持。
Microplastics,as an emerging pollutant that received increasing attention,have been confirmed to exist widely around the world and pose risks to both environment and human health. The various characteristics of microplastics lead to diverse analytical techniques,which has limited the consistent comparability of data between different studies. With the application of mass spectrometer in microplasitcs analysis,the mass concentration showed advantages in the comparability of different research data and has been used for the evaluation of occurrence level in different environmental matrices. In this study,a qualitative and quantitative analysis method for polyethyl
ene(PE),polypropylene(PP),polystyrene(PS),polyvinyl chloride(PVC),polyethylene terephthalate(PET),and polycarbonate(PC) microplastics was developed based on the thermogravimetric analysis/infrared spectroscopy-gas chromatography-mass spectrometer(TGA/FTIR-GC-MS). TGA monitors the thermal stability and volatile compounds of materials by recording mass loss as a function of temperature or time. FTIR could provide functional information of chemical structure. GC-MS could identify and quantify the pyrolysis products. As a comprehensive instrument platform,TGA/FTIR-GC-MS can achieve triple analysis of microplastics combing thermal decomposition kinetic information,spectral information and mass spectrum information. After detailed method optimization,the detection limits of the quantitative analysis method(LODs) were 0.03-1.11 μg. The recoveries were 80.4%-93.3% and the relative standard deviations(RSDs) obtained from spiked experiments were 4.0%-12%(
n
=3) for all six plastics. To further evaluate the method performances,pine needles,which are good passive biological sampler for monitoring organic pollutants,were analyzed as field sample matrices. A total of 12 pine needle samples were collected from different areas in China,such as Wuyi Mountain,Qinghai Lake,Yangshuo,Guangxi,and Greater Hinggan Mountains. All samples were carefully washed to remove interferes during the sampling and storage. The pine needles were then digested using tetramethylammonium hydroxide pentahydrate(TMAH) and analyzed using the developed method. The results showed that the concentrations of detected microplastics ranged from 0.01 μg∙mg
-1
to 3.15 μg∙mg
-1
which could be an indicator for local pollution status. The detection frequency(DF) was as follows:PE,PP and PS(100%),PET(92%),PC(60%),PVC(8%). The relative high DF suggested the possible enrichment of microplastics from environment matrix to plants,which deserves careful attentions. Meanwhile,the results also indicated that the developed method could prov
ide satisfying capacity for complex environmental matrices analysis. This work could provide practical analysis technical for pollution assessment and environmental behavior research of microplastics.
热重分析/红外光谱-气相色谱-质谱(TGA/FTIR-GC-MS)联用技术微塑料松针定量分析
TGA/FTIR-GC-MSmicroplasticspine needlesquantitative analysis
Ivleva N P. Chem. Rev.,2021,121(19):11886-11936.
Cole M,Lindeque P,Halsband C,Galloway T S. Mar. Pollut. Bull.,2011,62(12):2588-2597.
Funck M,Al-Azzawi M S M,Yildirim A,Knoop O,Schmidt T C,Drewes J E,Tuerk J. Chem. Eng. J.,2021,426:130933.
Dierkes G,Lauschke T,Becher S,Schumacher H,Foeldi C,Ternes T. Anal. Bioanal. Chem.,2019,411(26):6959-6968.
Peters C A,Hendrickson E,Minor E C,Schreiner K,Halbur J,Bratton S P. Mar. Pollut. Bull.,2018,137:91-95.
David J,Steinmetz Z,Kucerik J,Schaumann G E. Anal. Chem.,2018,90(15):8793-8799.
Mizuguchi H,Takeda H,Kinoshita K,Takeuchi M,Takayanagi T,Teramae N,Pipkin W,Matsui K,Watanabe A,Watanabe C. J. Anal. Appl. Pyrolysis,2023,171:105946.
Dong H,Wang L,Wang X,Xu L,Chen M,Gong P,Wang C. Environ. Sci.Technol.,2021,55(19):12951-12960.
Nash R,Joyce H,Pagter E,Frias J,Guinan J,Healy L,Kavanagh F,Deegan M,O'sullivan D. Environ. Sci.Technol.,2022,57(1):201-213.
Reed S,Clark M,Thompson R,Hughes K A. Mar. Pollut. Bull.,2018,133:460-463.
Kanhai L D K,Gardfeldt K,Krumpen T,Thompson R C,O'connor I. Sci. Rep.,2020,10(1):5004.
Yan Z H,Zhao H J,Zhao Y P,Zhu Q D,Qiao R X,Ren H Q,Zhang Y. J. Hazard. Mater.,2020,384:121489.
Ragusa A,Svelato A,Santacroce C,Catalano P,Notarstefano V,Carnevali O,Papa F,Rongioletti M C A,Baiocco F,Draghi S,D'amore E,Rinaldo D,Matta M,Giorgini E. Environ. Int.,2021,146:106274.
Huang S M,Huang X X,Bi R,Guo Q X,Yu X L,Zeng Q H,Huang Z Y,Liu T M,Wu H S,Chen Y L,Xu J L,Wu Y E,Guo P. Environ. Sci. Technol.,2022,56(4):2476-2486.
Leslie H A,Van Velzen M J M,Brandsma S H,Vethaak A D,Garcia-Vallejo J J,Lamoree M H. Environ. Int.,2022,163:107199.
Bai C L,Liu L Y,Hu Y B,Zeng E Y,Guo Y. Sci. Total Environ.,2022,806:150263.
Stubbins A,Law K L,Munoz S E,Bianchi T S,Zhu L. Science,2021,373(6550):51-55.
La Nasa J,Biale G,Fabbri D,Modugno F. J. Anal. Appl. Pyrolysis,2020,149:104841.
Lee T,Jung S,Park Y K,Kim T,Wang H,Moon D H,Kwon E E. J. Hazard. Mater.,2020,395:122576.
Ratola N,Alves A,Santos L,Lacorte S. Chemosphere,2011,85(2):247-252.
Cindoruk S S,Sakin A E,Tasdemir Y. Environ. Pollut.,2020,256:113418.
Luo Y D,Sun J Y,Wang P,Li Y M,Li H H,Xiao K,Yang R Q,Zhang Q H,Jiang G B. Sci. Total Environ.,2020,716:137176.
Chen Y Z,Ning Y Q,Bi X Y,Liu J L,Yang S C,Liu Z F,Huang W M. Chemosphere,2022,296:134043.
Chung D,Lee J H,Lee S Y,Park K W,Shim K Y. Atmos. Pollut. Res.,2021,12(5):101063.
Klingberg J,Strandberg B,Sjöman H,Taube M,Wallin G,Pleijel H. Sci. Total Environ.,2022,805:150163.
Liu X D,Lu J J,He S H,Tong Y B,Liu Z L,Li W J,Xiayihazi N. Sci. Total Environ.,2022,821:153181.
Li C,Gao Y,He S,Chi H Y,Li Z C,Zhou X X,Yan B. Environ. Sci. Technol. Lett.,2021,8(8):633-638.
Nel H A,Chetwynd A J,Kelly C A,Stark C,Valsami-Jones E,Krause S,Lynch I. Environ. Sci. Technol.,2021,55(13):8721-8729.
Liu Y,Li R J,Yu J P,Ni F L,Sheng Y F,Scircle A,Cizdziel J V,Zhou Y. Environ. Pollut.,2021,272:115946.
Qian T T,Li D C,Jiang H. Environ. Sci. Technol.,2014,48(18):10734-10742.
Wang J,Sun C,Huang Q X,Chi Y,Yan J H. J. Hazard. Mater.,2021,419:126486.
Tian K,Liu W J,Qian T T,Jiang H,Yu H Q. Environ. Sci. Technol.,2014,48(18):10888-10896.
Song S J,Cai L M,Liu Y H,Peng Z J,Liu C Y,Jiao H,Li P H,Liu Q,Yu M,Zhou T,Zhang Q H,Hollert H,Zhao X C,Jiang G B. J. Hazard. Mater.,2023,459:132189.
Van A,Rochman C M,Flores E M,Hill K L,Vargas E,Vargas S A,Hoh E. Chemosphere,2012,86(3):258-263.
Sullivan G L,Gallardo J D,Jones E W,Hollliman P J,Watson T M,Sarp S. Chemosphere,2020,249:126179.
Duemichen E,Eisentraut P,Bannick C G,Barthel A K,Senz R,Braun U. Chemosphere,2017,174:572-584.
Albignac M,Ghiglione J F,Labrune C,Ter Halle A. Mar. Pollut. Bull.,2022,181:113882.
Xue L D,Zhang L L,Yu H B,Zhu H X,Yuan M. Environ. Monitor. China(薛荔栋,张霖琳,于海斌,朱红霞,袁懋. 中国环境监测),2022,38(5):9-17.
Steinmetz Z,Kintzi A,Munoz K,Schaumann G E. J. Anal. Appl. Pyrolysis,2020,147:104803.
Klein M,Fischer E K. Sci. Total Environ.,2019,685:96-103.
Fan W X,Salmond J A,Dirks K N,Sanz P C,Miskelly G M,Rindelaub J D. Environ. Sci. Technol.,2022,56(24):17556-17568.
0
浏览量
294
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构