浏览全部资源
扫码关注微信
浙江工业大学 药学院,浙江 杭州 310014
张慧,博士,副教授,研究方向:中药质量过程控制,E-mail:zh889@zjut.edu.cn
纸质出版日期:2024-11-15,
收稿日期:2024-04-25,
修回日期:2024-05-29,
移动端阅览
潘忆瑕,张弘旭,颜继忠,张慧.基于高光谱与纹理特征融合的甘草药材基源鉴别研究[J].分析测试学报,2024,43(11):1745-1753.
PAN Yi-xia,ZHANG Hong-xu,YAN Ji-zhong,ZHANG Hui.Source Identification of Radix Glycyrrhizae(Licorice) Based on the Fusion of Hyperspectral and Texture Feature[J].Journal of Instrumental Analysis,2024,43(11):1745-1753.
潘忆瑕,张弘旭,颜继忠,张慧.基于高光谱与纹理特征融合的甘草药材基源鉴别研究[J].分析测试学报,2024,43(11):1745-1753. DOI: 10.12452/j.fxcsxb.24042504.
PAN Yi-xia,ZHANG Hong-xu,YAN Ji-zhong,ZHANG Hui.Source Identification of Radix Glycyrrhizae(Licorice) Based on the Fusion of Hyperspectral and Texture Feature[J].Journal of Instrumental Analysis,2024,43(11):1745-1753. DOI: 10.12452/j.fxcsxb.24042504.
不同甘草的基源鉴别对保障其临床应用具有重要意义。该研究基于乌拉尔甘草、胀果甘草和光果甘草3种基源共89根甘草药材的光谱特征,进一步利用灰度行程矩阵从4个角度(0°、45°、90°和135°)分别提取11个纹理特征参数(短行程强调、长行程强调、灰度不均匀性、行程不均匀性、行程百分比、低灰度行程强调、高灰度行程强调、短行程低灰度强调、短行程高灰度强调、长行程低灰度强调、长行程高灰度强调)对甘草药材进行鉴别,开发了归一化后求平均值的差异度法(NAD),筛选出对基源鉴别贡献较大的5个纹理特征,并将其与光谱特征进行融合,以提高基源鉴别的准确性。与传统的特征筛选方法SKB法、RFE法和SFM法相比,归一化后求平均值的差异度法展现出更高的适用性,支持向量机(SVM)分类器在测试集上的基源鉴别准确率达到了95.28%,高于未筛选(92.22%)、SKB法筛选(95.00%)、RFE法筛选(95.00%)和SFM法筛选(93.89%)的准确率。该研究提出的数据挖掘方法充分利用高光谱的光谱数据和图像数据,将光谱特征和纹理特征进行有机融合,为甘草药材的基源鉴别提供了一种新型无损的检测方法。
The identification of different sources of licorice is of great significance for ensuring its clinical application. Based on the spectral features of 89 licorice medicinal materials from three sources,including
Glycyrrhiza uralensis
Fisch.,
Glycyrrhiza inflata
Bat.,and
Glycyrrhiza glabra
L.,11 texture feature parameters(short run emphasis,long run emphasis,gray-level non-uniformity,run-length non-uniformity,run percentage,low gray-level run emphasis,high gray-level run emphasis,short run low gray-level emphasis,short run high gray-level emphasis,long run low gray-level emphasis,long run high gray-level emphasis) were extracted using the gray-level run-length matrix from four perspectives(0°,45°,90°,and 135°). Through an innovative feature selection method-normalized average discrepancy method,texture features with significant contributions were selected and fused with spectral features to improve the accuracy of source identification. Compared to traditional feature selection methods such as SelectKBest(SKB),recursive feature elimination(RFE),and SelectFromModel(SFM),the normalized average discrepancy method demonstrated higher applicability in the dataset of this study,with a source identification accuracy
of 95.28% on the test set using support vector machine(SVM) classifier,higher than the unselected(92.22%),SKB-selected(95.00%),RFE-selected(95.00%),and SFM-selected(93.89%) accuracies. The data mining method proposed in this study fully utilizes the hyperspectral data and image data,integrating spectral features and texture features,providing a new non-destructive analytical techniques for the source identification of licorice medicinal materials.
甘草基源鉴别高光谱成像技术机器学习灰度行程矩阵特征选择
licoricesource identificationhyperspectral imaging technologymachine learninggray-level run-length matrixfeature selection
The State Pharmacopoeia Commission of the People's Republic of China. Pharmacopoeia of the People’s Republic of China.Volume I. Beijing:China Medical Science and Technology Press(国家药典编委会. 中华人民共和国药典. 2020年版 一部. 北京:中国医药科技出版社),2020:88.
Yu Z B,Dong S H,Zhang J W,Li D Y,Liu Y,Li H,Du S S. J. Ethnopharmacol.,2022,298:115613.
Ding Y M,Brand E,Wang W Q,Zhao Z Z. J. Ethnopharmacol.,2022,298:115594.
Sun P P,Yu P,Ge S Y. Chin. J. Rural Med. Pharm.(孙萍萍,余平,葛淑瑜. 中国乡村医药),2023,30(20):23-25.
Liu J. Inn. Mong. J. Tradit. Chin. Med.(刘杰. 内蒙古中医药),2024,43(3):146-147.
Han K,Wang M,Zhang L,Wang C Y. Molecules,2018,23(10):2728.
Li Y Q,Kong D X,Wu H. Rev. Bras. Farmacogn.,2018,28(5):533-541.
Zhang H,Xu C,Tian Q H,Zhang Y,Zhang G M,Guan Y X,Tong S Q,Yan J Z. J. Ethnopharmacol.,2021,264:113282.
Zhang H,Wang J N,Chen Y,Shen X W,Jiang H J,Gong X C,Yan J Z. J. Sep. Sci.,2019,42(6):1117-1298.
Bian X H,Lu Z K,van Kollenburg G. Anal. Methods,2020,12(17):3499-3507.
Zhen Z F. J. Sichuan Tradit. Chin. Med.(甄中锋. 四川中医),2018,36(12):178-180.
Liu Y C,Li Z,Ma L D,Guo H Z,Chen Y G,Fu X T,Wang W Q. Chin. Pharm. J.(刘育辰,李铮,马丽端,郭洪祝,陈有根,傅欣彤,王文全.中国药学杂志),2011,46(14):1112-1116.
Li T,Qiao Z X,Li M,Zhou N,Ren G X,Jiang D,Liu C S. Int. J. Food Prop.,2023,26(1):197-207.
Zhang H,Gao S H. J. Instrum. Anal.(张浩,高树辉. 分析测试学报),2023,42(7):817-824.
Ma L,Ma Q,Li Y J,Zhang Y Y,Wang J,Ma S Y,Ma Y,Du M H,Wu L G. J. Instrum. Anal.(马玲,马倩,李亚娇,张祎洋,王静,马思艳,马燕,杜明华,吴龙国. 分析测试学报),2023,42(2):210-215.
Pan Y X,Zhang H X,Chen Y,Gong X C,Yan J Z,Zhang H. Crit. Rev. Anal. Chem.,2023. https://doi.org/10.1080/10408347.2023.2207652https://doi.org/10.1080/10408347.2023.2207652.
Yin W J,Ru C L,Zheng J,Zhang L,Yan J Z,Zhang H. China J. Chin. Mater. Med.(殷文俊,茹晨雷,郑洁,张璐,颜继忠,张慧. 中国中药杂志),2021,46(4):923-930.
Zhang H,Pan Y X,Chen Y,Zhang H X,Xie J H,Gong X C,Zhu J Q,Yan J Z. Analyst,2024,149:1837-1848.
Zhao X X,Ruan J J,Li J,Dai C X,Pei M C,Zhou Y. Magn. Reson. Imaging,2024,110:7-16.
Guyon I,Elisseeff A. J. Mach. Learn. Res.,2003,3:1157-1182.
1.4.2 Scikit-Learn(2024). 1.13.2 Univariate Feature Selection. [2024-5-20]. https://scikit-learn.org/stable/modules/feature_selection.html#univariate-feature-selectionhttps://scikit-learn.org/stable/modules/feature_selection.html#univariate-feature-selection.
Guyon I,Weston J,Barnhill S,Vapnik V. Mach. Learn,2002,46:389-422.
1.4.2 Scikit-Learn(2024). 1.13.3 Recursive Feature Elimination. [2024-5-20]. https://scikit-learn.org/stable/modules/feature_selection.html#recursive-feature-eliminationhttps://scikit-learn.org/stable/modules/feature_selection.html#recursive-feature-elimination.
Krupinova J A,Elfimova A R,Rebrova O Y,Voronkova I A,Eremkina A K,Kovaleva E V,Maganeva I S,Gorbacheva A M,Bibik E E,Deviatkin A A,Melnichenko G A,Mokrysheva N G. J. Pathol. Inf.,2022,13:100134.
1.4.2 Scikit-Learn(2024). 1.13.4 Feature Selection Using SelectFromModel. [2024-5-20]. https://scikit-learn.org/stable/modules/feature_selection.html#feature-selection-using-selectfrommodelhttps://scikit-learn.org/stable/modules/feature_selection.html#feature-selection-using-selectfrommodel.
Belhumeur P N,Hespanha J P,Kriegman D J. IEEE Trans. Pattern Anal. Mach. Intell.,1997,19(7):711-720.
Sun J L,Liu P,Zhai H W. J. Hebei Acad. Sci.(孙洁丽,刘沛,翟浩文. 河北省科学院学报),2022,39(5):1-6.
Vapnik V N,Lerner A Y. Avtom. Telemekh.,1963,24(6):774-780.
Ozaki Y. Anal. Sci.,2021,37(9):1193-1212.
Tomar M,Bhardwaj R,Kumar M,Sumer P S,Krishnan V,Kansal R,Verma R,Yadav V K,Dahuja A,Ahlawat S P,Rana J C,Satyavathi C T,Praveen S,Sachdev A. LWT-Food Sci. Technol.,2021,149:111813.
0
浏览量
55
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构