浏览全部资源
扫码关注微信
华东理工大学 机械与动力工程学院 承压系统与安全教育部重点实验室,上海 200237
刘利强,博士,讲师,研究方向:严苛服役环境测试技术及装备,E-mail:13843155571@139.com
孙彬涵,博士,教授,研究方向:氢致损伤及抗损伤设计,E-mail:binhan.sun@ecust.edu.cn
涂善东,博士,教授,研究方向:化工装备安全,高温强度学,先进能源材料与装备,E-mail:sttu@ecust.edu.cn
纸质出版日期:2024-09-15,
收稿日期:2024-04-24,
修回日期:2024-06-11,
移动端阅览
周万成,孔帅,刘利强,孙彬涵,张显程,涂善东.高温临氢环境材料原位力学测试系统及其在高温合金中的应用[J].分析测试学报,2024,43(09):1324-1330.
ZHOU Wan-cheng,KONG Shuai,LIU Li-qiang,SUN Bin-han,ZHANG Xian-cheng,TU Shan-tung.In-situ Materials Mechanical Testing System under High-temperature Hydrogen Environment and Its Application[J].Journal of Instrumental Analysis,2024,43(09):1324-1330.
周万成,孔帅,刘利强,孙彬涵,张显程,涂善东.高温临氢环境材料原位力学测试系统及其在高温合金中的应用[J].分析测试学报,2024,43(09):1324-1330. DOI: 10.12452/j.fxcsxb.24042405.
ZHOU Wan-cheng,KONG Shuai,LIU Li-qiang,SUN Bin-han,ZHANG Xian-cheng,TU Shan-tung.In-situ Materials Mechanical Testing System under High-temperature Hydrogen Environment and Its Application[J].Journal of Instrumental Analysis,2024,43(09):1324-1330. DOI: 10.12452/j.fxcsxb.24042405.
该文设计并制造了一种高温临氢环境力学试验装置,可实现最高600 ℃以及2 MPa纯氢或混氢环境下材料的拉伸测试。该装置创新氢气环境箱设计,并配备真空及气体置换系统,可实现既定试验温度下高纯气体的压力控制。通过采用直线位移传感器,实现了对材料变形量的准确稳定测量。利用该装置评价了GH4169高温合金在不同温度临氢环境下的拉伸性能,结果表明,氢环境会对材料产生明显的脆化作用,主要体现在降低材料的延伸率及断面收缩率。利用扫描电子显微技术,对GH4169在不同温度临氢环境下的断裂模式及机制进行分析发现,GH4169在200 ℃下的氢致损伤更为严重,主要是因为氢原子在高温下的扩散速度较快,更易在晶界上聚集并诱发氢致沿晶断裂,进而使得材料塑性显著降低。
Metallic materials can experience early damage formation and even catastrophic failure when subjected to loading under high-temperature hydrogen environment. The corresponding mechanical properties are,however,not widely reported due to the difficulty of performing environmental mechanical testing. Here an in-situ material mechanical testing system is designed to address this issue. This system is capable of performing tensile tests under either pure hydrogen or hydrogen mixed environment at temperatures up to 600 ℃ and pressures up to 2 MPa. The facility features a hydrogen environment chamber equipped with vacuum,gas purging and heating systems. Deformation can be measured accurately by using a linear variable displacement transducer(LVDT) in combination with accurate sensors. The facility was utilized to assess the tensile performance of a GH4169 superalloy under various temperatures(25,200,400 and 600 ℃) in both pure gaseous hydrogen and pure gaseous Ar environment. The findings highlight a significant embrittlement effect of the hydrogen environment on the material,reflected by the reduced elongation and reduction of area in compassion to the corresponding values under Ar. Analysis is further conducted using scanning electron microscopy(SEM) to investigate the fracture modes and hydrogen-induced damage mechanisms of the alloy tested under 25 and 200 ℃. It is concluded that hydrogen-induced damage in GH4169 is more severe at 200 ℃ when compared with 25 ℃. This increased hydrogen sensitivity is primarily due to the accelerated diffusion of hydrogen atoms at high temperature,which leads to a faster hydrogen accumulation at grain boundaries and thereby a facile hydrogen-induced intergranular fracture.
氢损伤高温力学测试高温合金
hydrogen damagehigh-temperaturemechanical testingsuperalloy
Jiang H D,Ren J,Li X Y. Proc. CSEE(蒋洪德,任静,李雪英. 中国电机工程学报),2014,34(29):5096-5102.
Lee J A. Hydrogen Embrittlement. Alabama:Marshall Space Flight Center,2016:1-43.
Gangloff R P. Gaseous hydrogen Embrittlement of Materials in Energy Technologies. Volume 1. Cambridge:Woodhead Publishing Limited,2012:51-93,624-701.
Zhang B L,Zhu Q S,Xu C,Li C T,Ma Y,Liu S N,Shao R W,Xu Y T,Jiang B L,Gao L,Pang X L,He Y,Chen G,Qiao L J. Nat. Commun.,2022,13(1):3858.
Wasim M,Djukic M B. Int. J. Hydrogen. Energy,2020,45(3):2145-2156.
Li X F,Ma X F,Zhang J,Akiyama E,Wang Y F,Song X L. Acta Metall. Sin.-engl.,2020,33:759-773.
Tarzimoghadam Z,Rohwerder M,Merzlikin S V,Bashir A,Yedra L,Eswara S,Ponge D,Raabe D. Acta Mater.,2016,109:69-81.
Gong P,Turk A,Nutter J,Yu F,Wynne B,Rivera-Diaz-del-Castillo P,Rainforth W M. Acta Mater.,2022,223:117488.
Wang L W,Liang J M,Li H,Cheng L J,Cui Z Y. Corros. Sci.,2021,178:109076.
Nomura S,Hasegawa M. Corros. Eng.(野村茂雄,長谷川正義. 防食技術),1976,25(6):377-384.
Eliezer D. J. Mater. Sci.,1981,16:2962-2966.
Vitovec F H. Can. Metall. Quart.,1984,23(1):59-62.
Chiba R,Qhnishi K,Ishii K,Maeda K. Tetsu-to-Hagané (千葉隆一,大西敬三,石井邦雄,前田啓吉. 鉄と鋼),1976,25(6):377-384.
Honma Y,Kayano R. J. Jpn. Weld. Soc.(本間祐太,茅野林造. 溶接学会誌),2016,85(6):575-580.
Martin M L,Dadfarnia M,Orwig S,Moore D,Sofronis P. Acta Mater.,2017,140:300-304.
Tan J Z. Petrochem. Equip. Technol. (谈金祝. 石油化工设备技术),2001,(3):53-55,1.
McCoy H E. Effects of Hydrogen on the High- temperature Flow and Fracture Characteristics of Metals. Tennessee:Oak Ridge National Laboratory,1964:1-221.
Yokogawa K,Fukuyama S,Mitsui M,Kudo K. Rev. Sci. Instrum.,1978,49(1):50-51.
Yokogawa K,Fukuyama S,Kudo K. Rev. Sci. Instrum.,1982,53(1):86-89.
API-RP 941. Steels for Hydrogen Service at Elevated Temperatures and Pressures in Petroleum Refineries and Petrochemical Plants. American Petroleum Institute.
Deluca D P. Mechanical Properties of Turbine Blade Alloys in Hydrogen at Elevated Temperatures. Florida:United Technologies Pratt & Whitney Aircraft,1981:1-107.
Yoshida M. Test Apparatus and Tensile Properties of LE-7 Turbine Blade Materials in High Pressure Hydrogen Conditions. Tokyo:National Aerospace Laboratory,1991:1-19.
Balitskii A,Ivaskevich L,Mochulskyi V,Eliasz J,Skolozdra O. Arch. Mech. Eng.,2014,61:129-138.
Zhou C L. Research on Material Mechanics Properties Testing Equipment in 140 MPa High-pressure Hydrogen Environment. Hangzhou:Zhejiang University(周池楼. 140 MPa高压氢气环境材料力学性能测试装置研究. 杭州:浙江大学),2016.
Chen X D,Liu X L,Wang B. China Patent(陈学东,刘孝亮,王冰. 中国专利),CN104897476B. [2018-03-02].
Liu X L,Wang B,Fan Z C,Zhuang Q W,Fan H. Eng. Test(刘孝亮,王冰,范志超,庄庆伟,范辉. 工程与试验),2016,56(1):1-6,14.
ASTM G142-98. Standard Test Method for Determination of Susceptibility of Metals to Embrittlement in Hydrogen Containing Environments at High Pressure,High Temperature,or Both. ASTM International.
Xu L,Lei X S. Machinery(许磊,雷旭升. 机械制造),2021,50(5):32-34.
Ogawa Y,Takakuwa O,Okazaki S,Okita K,Funakoshi Y,Matsunaga H,Matuoka S. Corros. Sci.,2019,161:108186.
0
浏览量
131
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构