浏览全部资源
扫码关注微信
1.郑州大学 河南先进技术研究院,河南 郑州 450001
2.中国科学院生态环境研究中心,北京 100085
黎 娟,博士,副研究员,研究方向:新污染物的分析方法、环境行为与暴露风险,E-mail:juanli@rcees.ac.cn
纸质出版日期:2024-08-15,
收稿日期:2024-04-18,
修回日期:2024-05-22,
移动端阅览
周鑫月,卢瑶,罗雅丹,黎娟,王亚韡.固相萃取/高效液相色谱-串联质谱法同时测定氟橡胶、氟树脂及其制品中多种全氟和多氟烷基化合物[J].分析测试学报,2024,43(08):1166-1179.
ZHOU Xin-yue,LU Yao,LUO Ya-dan,LI Juan,WANG Ya-wei.Simultaneous Determination of Per- and Polyfluoroalkyl Compounds in Fluoroelastomer and Fluoroplastic Products by Solid Phase Extraction/High Performance Liquid Chromatography-Tandem Mass Spectrometry[J].Journal of Instrumental Analysis,2024,43(08):1166-1179.
周鑫月,卢瑶,罗雅丹,黎娟,王亚韡.固相萃取/高效液相色谱-串联质谱法同时测定氟橡胶、氟树脂及其制品中多种全氟和多氟烷基化合物[J].分析测试学报,2024,43(08):1166-1179. DOI: 10.12452/j.fxcsxb.24041802.
ZHOU Xin-yue,LU Yao,LUO Ya-dan,LI Juan,WANG Ya-wei.Simultaneous Determination of Per- and Polyfluoroalkyl Compounds in Fluoroelastomer and Fluoroplastic Products by Solid Phase Extraction/High Performance Liquid Chromatography-Tandem Mass Spectrometry[J].Journal of Instrumental Analysis,2024,43(08):1166-1179. DOI: 10.12452/j.fxcsxb.24041802.
基于固相萃取/高效液相色谱-串联质谱(HPLC-MS/MS)技术,建立了氟橡胶、氟树脂及其制品中37种全氟和多氟烷基化合物(PFASs)的定量分析方法和19种PFASs的定性分析方法。采用25 mmol·L
-1
乙酸铵甲醇/乙腈(1∶1,体积比)溶液对氟橡胶类、氟树脂固体类和氟树脂纺织类样品进行超声振荡提取;采用四甲基叔丁基醚(MTBE)对氟树脂液体类样品进行超声振荡提取,提取液经Envi-carb和Oasis WAX柱固相萃取,并用甲醇和0.1%氨水甲醇洗脱。在10 mmol·L
-1
乙酸铵溶液-乙腈流动相下采用Acquity UPLC BEH C
18
(2.1 mm×100 mm,1.7 µm)色谱柱对目标化合物进行梯度洗脱分离,多反应监测模式(MRM)进行采集,内标法定量。结果表明,在5、10、20 ng·g
-1
(氟橡胶类)和2.5、5、10 ng·g
-1
(氟树脂类)加标水平下,氟橡胶类、氟树脂固体类、氟树脂纺织类和氟树脂液体类样品中37种PFASs的回收率分别为81.3%~109%、60.9%~111%、87.8%~125%和88.7%~140%;相对标准偏差(RSD)分别为1.4%~28%、1.5%~22%、1.8%~27%和1.4%~19%;检出限(LOD)分别为0.03~0.3 ng·g
-1
、0.03~0.8 ng·g
-1
、0.02~2 ng·g
-1
和0.04~1 ng·g
-1
;定量下限(LOQ)分别为0.07~0.9 ng·g
-1
、0.08~2 ng·g
-1
、0.06~6 ng·g
-1
和0.1~4 ng·g
-1
。19种PFASs的回收率为0.300%~208%,适于半定量和定性分析。使用该方法测定10个氟橡胶和氟树脂样品,Σ
37
PFASs含量为9.73~66.17 ng·g
-1
。该方法操作简便
、灵敏度高且定量准确,可为研究氟橡胶、氟树脂及其制品中PFASs的残留情况及完善我国出口贸易和国内履约执法监测提供技术支撑。
In this study,a method for quantitative analysis of 37 PFASs(per- and polyfluoroalkyl compounds) and qualitative analysis of 19 PFASs in fluoroelastomer and fluoroplastic products was developed based on solid phase extraction/high performance liquid chromatography-tandem mass spectrometry(HPLC-MS/MS). The samples of fluoroelastomers,fluoroplastic solids and fluoroplastic textiles were extracted by ultrasonication and oscillation using 25 mmol·L
-1
ammonium acetate methanol/acetonitrile(1∶1,volume ratio) solution. The samples of fluoroplastic liquids were extracted by ultrasonication and oscillation using methyltert-butylether(MTBE). And then extract was extracted by Envi-carb and Oasis WAX cartridges,and eluted with methanol and 0.1% ammonia methanol. The target compounds were analyzed by a Acquity UPLC BEH C
18
column(2.1 mm×100 mm,1.7 μm) with mobile phase consisted of 10 mmol·L
-1
ammonium acetate solution and acetonitrile. The samples were detected by tandem mass spectrometry under multiple reaction monitoring(MRM) mode and quantified by internal standard method. The results showed that at spiked levels of 5 ng·g
-1
,10 ng·g
-1
and 20 ng·g
-1
(fluoroelastomer samples) and 2.5 ng·g
-1
,5 ng·g
-1
and 10 ng·g
-1
(fluoroplastic samples),the recoveries of 37 PFASs in fluoroelastomers,fluoroplastic solids,fluoroplastic textiles and fluoroplastic liquids were in the ranges of 81.3%-109%,60.9%-111%,87.8%-125%,and 88.7%-140%,and the relative standard deviations(RSDs) were 1.4%-28%,1.5%-22%,1.8%-27% and 1.4%-19%,and the method detection limits(LOD) were 0.03-0.3 ng·g
-1
,0.03-0.8 ng·g
-1
,0.02-2 ng·g
-1
and 0.04-1 ng·g
-1
,and the method quantitation limits(LOQ) were 0.07-0.9 ng·g
-1
,0.08-2 ng·g
-1
,0.06-6 ng·g
-1
and 0.1-4 ng·g
-1
. The recoveries of 19 PFASs ranged from 0.300%-208%,which are suitable for semi-quantitative and qualitative analysis. The method was used to detect 10 fluoroelastomer and fluoroplastic samples,and the content range of Σ
37
PFASs was 9.73-66.17 ng·g
-1
. The method is easy to operate,sensitive and accurate in quantification,which can provide technical support for the future study of PFASs residues in fluoroelastomers and fluoroplastic products,and for the improvement of China's export trade and the enforcement of domestic compliance monitoring.
氟橡胶氟树脂全氟及多氟烷基化合物高效液相色谱-串联质谱固相萃取
fluoroelastomerfluoroplasticper- and polyfluoroalkyl compounds(PFASs)high performance liquid chromatography-tandem mass spectrometry(HPLC-MS/MS)solid phase extraction(SPE)
Jia X,Guan H Y,Guo Z B,Qian C J,Shi Y L,Cai Y Q. Environ. Sci. Technol. Lett.,2021,8(11):968-974.
Lohmann R,Letcher R J. Curr. Opin. Green Sustainable Chem.,2023,41:100795.
Wang Z Y,DeWitt J C,Higgins C P,Cousins I T. Environ. Sci. Technol.,2018,52(5):3325.
Chen H H,Qiu W H,Yang X J,Chen F Y,Chen J Y,Tang L,Zhong H B,Magnuson J T,Zheng C M,Xu E G. Environ. Sci. Technol.,2022,56(12):8438-8448.
Lohmann R,Cousins I T,DeWitt J C,Gluege J,Goldenman G,Herzke D,Lindstrom A B,Miller M F,Ng C A,Patton S,Scheringer M,Trier X,Wang Z Y. Environ. Sci. Technol.,2020,54(20):12820-12828.
Manojkumar Y,Pilli S,Rao P V,Tyagi R D. Neurotoxicol. Teratol.,2023,97:107147.
Du M J,Pu Q K,Li X X,Yang H,Hao N,Li Q,Zhao Y Y,Li Y. J. Cleaner Prod.,2023,391:136191.
Hogue C. Chem. Eng. News,2020,98(4):16.
UNEP/POPS/COP.SC-9/12. Listing of Perfluorooctanoic Acid(PFOA),Its Salts and PFOA-related Compounds. 2019.[2024-04-01].https://chm.pops.int/Implementation/Alternatives/AlternativestoPOPs/ChemicalslistedinAnnexA/PFOA/tabid/8292/Default.aspxhttps://chm.pops.int/Implementation/Alternatives/AlternativestoPOPs/ChemicalslistedinAnnexA/PFOA/tabid/8292/Default.aspx.
UNEP/POPS/COP. SC-4/17. Listing of Perfluorooctane Sulfonic Acid,Its Salts and Perfluorooctane Sulfonyl Fluoride. 2009. [2024-04-01]. https://www.informea.org/en/decision/listing-perfluorooctane-sulfonic-acid-its-salts-and-perfluo rooctane-sulfonyl-fluoride-0https://www.informea.org/en/decision/listing-perfluorooctane-sulfonic-acid-its-salts-and-perfluorooctane-sulfonyl-fluoride-0.
UNEP/POPS/COP. Report of the Conference of the Parties to the Stockholm Convention on Persistent Organic Pollutants on the Work of its Tenth Meeting,2021. [2024-04-01]. http://www.pops.int/TheConvention/ConferenceoftheParties/Meetings/COP10/tabid/8397/Default.aspxhttp://www.pops.int/TheConvention/ConferenceoftheParties/Meetings/COP10/tabid/8397/Default.aspx.
Wang T,Vestergren R,Herzke D,Yu J,Cousins I T. Environ. Sci. Technol.,2016,50(21):11584-11592.
Demarteau J,Ameduri B,Ladmiral V,Mees M A,Hoogenboom R,Debuigne A,Detrembleur C. Macromolecules,2017,50(10):3751-3761.
Ameduri B. Macromolecules,2011,44(7):2394.
European Union)EU,2020. Commission Regulation (EU) 2020/784 of 8 April 2020. https://eurlex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32020R0784&qid=1609204057764&from=ENhttps://eurlex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32020R0784&qid=1609204057764&from=EN.
Yeung L W Y,De Silva A O,Loi E I H,Marvin C H,Taniyasu S,Yamashita N,Mabury S A,Muir D C G,Lam P K S. Environ. Int.,2013,59:389-397.
Codling G,Hosseini S,Corcoran M B,Bonina S,Lin T,Li A,Sturchio N C,Rockne K J,Ji K,Peng H,Giesy J P. Environ. Pollut.,2018,236:373-381.
Zhao L X,Zhang Y F,Zhu L Y,Ma X X,Wang Y,Sun H W,Luo Y. Environ. Sci. Technol. Lett.,2017,4(10):391-398.
Jin H B,Zhang Y F,Jiang W W,Zhu L Y,Martin J W. Environ. Sci. Technol.,2016,50(14):7808-7815.
Pan G,Zhou Q,Luan X,Fu Q S. Sci. Total Environ.,2014,487:778-784.
Wang P,Lu Y L,Wang T Y,Meng J,Li Q F,Zhu Z Y,Sun Y J,Wang R S,Giesy J P. J. Hazard. Mater.,2016,307:55-63.
Tan B,Wang T Y,Wang P,Luo W,Lu Y L,Romesh K Y,Giesy J P. Environ. Sci. Pollut. Res.,2014,21(15):9201-9211.
Chen L,Dai Y Y,Zhou C,Huang X F,Wang S Z,Yu H,Liu Y,Morel J L,Lin Q Q,Qiu R L. J. Agric. Food Chem.,2020,68(30):8026-8039.
Wong F,Shoeib M,Katsoyiannis A,Eckhardt S,Stohl A,Bohlin-Nizzetto P,Li H,Fellin P,Su Y S,Hung H. Atmos. Environ.,2018,172:65-73.
Yu N Y,Guo H W,Yang J P,Jin L,Wang X B,Shi W,Zhang X W,Yu H X,Wei S. Environ. Sci. Technol.,2018,52(15):8205-8214.
Qi Y J,Hu S B,Huo S L,Xi B D,Zhang J T,Wang X W. Ecol. Indic.,2015,57:1-10.
Zhao P J,Xia X H,Dong J W,Xia N,Jiang X M,Li Y,Zhu Y M. Sci. Total Environ.,2016,568:57-65.
Rand A A,Mabury S A. Environ. Sci. Technol.,2011,45(19):8053-8059.
Meng L Y,Song B Y,Lu Y,Lv K,Gao W,Wang Y W,Jiang G B. J. Environ. Sci.,2021,107:77-86.
van der Veen I,Hanning A C,Stare A,Leonards P E G,de Boer J,Weiss J M. Chemosphere,2020,249:126100.
He A E,Liang Y,Li F F,Lu Y,Liu C,Li J,Zhou Z,Zhu N L,Liao C Y,Wang Y W,Jiang G B. Environ. Sci. Technol.,2022,56(23):16789-16800.
Pan Y T,Wang J H,Yeung L W Y,Wei S,Dai J Y. TrAC-Trends Anal. Chem.,2020,124:115481.
Liu C,He A E,Luo Y D,Li J,Wang Y W. Environ. Chem.(刘超,何安恩,罗雅丹,黎娟,王亚韡. 环境化学),2024,43(5):1-12.
0
浏览量
53
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构