浏览全部资源
扫码关注微信
1.自然资源部第三海洋研究所 分析测试中心,福建 厦门 361005
2.中国地质调查局舟山海洋地质灾害野外 科学观测研究站,山东 青岛 266237
尹希杰,博士,研究员,研究方向:稳定同位素技术与方法研究,E-mail:yinxijie@tio.org.cn
纸质出版日期:2024-09-15,
收稿日期:2024-04-15,
修回日期:2024-05-31,
移动端阅览
漆艳,尹希杰,李玉红,林锡煌.固相微萃取/气相色谱/燃烧-同位素比值质谱技术测定水体中微量苯系物单体碳同位素方法研究[J].分析测试学报,2024,43(09):1474-1480.
QI Yan,YIN Xi-jie,LI Yu-hong,LIN Xi-huang.Research on the Method for Determining Compound Specific Carbon Isotopes of Trace Benzenes in Water by Solid Phase Microextraction/Gas Chromatography/Combustion-Isotope Ratio Mass Spectrometry[J].Journal of Instrumental Analysis,2024,43(09):1474-1480.
漆艳,尹希杰,李玉红,林锡煌.固相微萃取/气相色谱/燃烧-同位素比值质谱技术测定水体中微量苯系物单体碳同位素方法研究[J].分析测试学报,2024,43(09):1474-1480. DOI: 10.12452/j.fxcsxb.24041501.
QI Yan,YIN Xi-jie,LI Yu-hong,LIN Xi-huang.Research on the Method for Determining Compound Specific Carbon Isotopes of Trace Benzenes in Water by Solid Phase Microextraction/Gas Chromatography/Combustion-Isotope Ratio Mass Spectrometry[J].Journal of Instrumental Analysis,2024,43(09):1474-1480. DOI: 10.12452/j.fxcsxb.24041501.
该文建立了固相微萃取/气相色谱/燃烧-同位素比值质谱(SPME/GC/C-IRMS)技术测定水体中7种苯系物碳同位素(
δ
13
C)的方法。实验结果表明,萃取温度30 ℃,萃取时间60 min条件下萃取效果最佳,萃取温度(30~60 ℃)和萃取时间(15~60 min)对顶空萃取(HS-SPME)过程中的碳同位素分馏无影响。最佳萃取条件下,利用HS-SPME和直接萃取(D-SPME)方法分别测试7种苯系物的
δ
13
C值,标准偏差分别为 0.08‰~0.45‰和0.05‰~0.39‰,测试误差分别为-0.16‰~0.33‰和-0.41‰~0.46‰,两种SPME方式在萃取过程中均未发生明显碳同位素分馏,HS-SPME的灵敏度比D-SPME方法高1~2个数量级。通过移动平均值算法计算苯、间/对二甲苯、异丙苯的检出限为1 μg/L,甲苯、乙苯、邻二甲苯、苯乙烯的检出限为2 μg/L。测得江苏某废弃农药场地下水中7种苯系物
δ
13
C值的标准偏差为0.01‰~0.43‰。该方法样品前处理简单、灵敏度高、准确性好,适用于水体中痕量苯系物单体碳同位素的检测。
This study introduces a solid phase microextraction/gas chromatography/combustion-isotope ratio mass spectrometry(SPME/GC/C-IRMS) technology for analyzing the carbon isotopes of seven benzene series compounds in water. The pretreatment conditions for headspace solid phase microextraction(HS-SPME) were optimized. The results demonstrated that the extraction efficiency reached its maximum at an extraction temperature of 30 ℃ and an extraction time of 60 minutes. Variations in extraction temperature(30-60 ℃) and extraction time(15-60 m
in) did not cause carbon isotope fractionation during HS-SPME. Under the optimized extraction conditions,both HS-SPME and D-SPME methods were employed to measure the
δ
13
C values of the seven benzene series compounds. The standard deviations ranged from 0.08‰-0.45‰ and 0.05‰-0.39‰,and the test error varied from -0.16‰-0.33‰ and -0.41‰-0.46‰,respectively. No obvious carbon isotope fractionation occurred during the extraction process in both SPME methods,and the sensitivity of the HS-SPME method is 1-2 orders of magnitude higher than the D-SPME method. Utilizing the moving average algorithm,the detection limits for benzene,
m
-/
p
-xylene,and isopropylbenzene were determined to be 1 μg/L,while for toluene,ethylbenzene,
o
-xylene and styrene,the detection limits were 2 μg/L. This method was applied to analyze groundwater from an abandoned pesticide factory in Jiangsu,yielding
δ
13
C values for the seven benzene series compounds with good repeatability (standard deviation:0.01%-0.43‰). This method can be applied to detect the carbon isotope for trace benzene series compounds in water,because of the simple pretreatment procedure,high sensitivity and good accuracy.
苯系物固相微萃取气相色谱/燃烧-同位素质谱单体碳稳定同位素分析水体
benzene series compoundssolid phase microextractiongas chromatography/combustion-isotope ratio mass spectrometrycompound specific carbon isotope analysiswater
Fang H B,Lin J P,Zhou Z,Lin M,Su S Z,Liu S,Dong Y R,Li W S. Acta Sci. Circumstantiae(方洪波,林洁萍,周振,林满,苏淑珍,刘素,董妍汝,李文淑. 环境科学学报),2023,43(6):131-140.
Peng J J,Li L,Zheng C,Hu L,Wu X X. Environ. Eng.(彭进进,李琳,郑川,胡玲,吴晓煦. 环境工程),2021,39(4):187-194.
Zhou Y,Jiang D D,Kong L Y,Ding D,Deng S P,Xia F Y. Acta Sci. Circumstantiae(周艳,姜登登,孔令雅,丁达,邓绍坡,夏菲洋. 环境科学学报),2022,42(7):380-388.
Yu J Y,Han Y,Chen M L,Zhang H F,Chen Y,Liu J G. Environ. Sci.(余家燕,韩燕,陈木兰,张惠芳,陈阳,刘建国. 环境科学),2022,43(1):113-122.
Guan J P,Wang C L,Men X T,Xi X J,Zhao H R. Environ. Prot. Oil Gas Fields(关晶萍,王成良,门晓棠,西晓静,赵虎仁. 油气田环境保护),2012,22(6):65-68,89-90.
Xiang Y,Yu X D,Wang R. Mod. Mining(项莹,余向东,王锐. 现代矿业),2021,37(3):223-225.
Jochmann M A,Blessing M,Haderlein S B,Schmidt T C. Rapid Commun. Mass Spectrom.,2006,20(24):3639-3648.
Demeestere K,Dewulf J,De Witte B,Van Langenhove H. J. Chromatogr. A,2007,1153(1/2):130-144.
Morrill P L,Lacrampe-Couloume G, Lollar B S. Rapid Commun. Mass Spectrom.,2004,18(6):595-600.
Calderone G,Guillou C,Reniero F,Naulet N. Food Res. Int.,2007,40(3):324-331.
Herrero-Martín S,Nijenhuis I,Richnow H H,Gehre M. Anal. Chem.,2015,87(2):951-959.
Su J,Yin X J,Ding D,Qi Y. J. Instrum. Anal.(苏静,尹希杰,丁达,漆艳. 分析测试学报),2023,42(5):634-640.
Zwank L,Berg M,Schmidt T C,Haderlein S B. Anal. Chem., 2003,75(20):5575-5583.
Amaral H I F,Berg M,Brennwald M S,Hofer M,Kipfer R. Environ. Sci. Technol.,2010,44(3):1023-1029.
Jin X,Zhang L,Wu S,Huang M,Yu W,Zhang S. Food Qual. Saf.,2021,5(1):56-66.
Palau J,Soler A,Teixidor P,Aravena R. J. Chromatogr. A, 2007,1163(1/2):260-268.
Gorecki T,Yu X M,Pawliszyn J. Analyst (London),1999,124(5):643-649.
Cho H J,Baek K,Lee H H,Lee S H,Yang J W. J. Chromatogr. A,2003,988(2):177-184.
Hunkeler D,Butler B J,Aravena R,Barker J F. Environ. Sci. Technol.,2001,35(4):676-681.
Li Z P,Wang X B,Li L W,Zhang M J,Tao M X,Xing L T,Cao C H, Xia Y Q. J. Chromatogr. A, 2014,1372:228-235.
Koziel J,Jia M Y,Pawliszyn J. Anal. Chem.,2000,72(21):5178-5186.
Trujillo-Rodriguez M J,Pino V,Psillakis E,Anderson J L,Ayala J H,Yiantzi E,Afonso A M. Anal. Chim. Acta,2017,962:41-51.
Steinwand A L,Harrington R F,Groeneveld D P. J. Arid. Environ.,2001,49(3):555-567.
0
浏览量
40
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构