浏览全部资源
扫码关注微信
黑龙江八一农垦大学 信息与电气工程学院,黑龙江 大庆 163000
陈争光,博士、教授,研究方向:基于近红外光谱的农产品快速检测,E-mail:ruzee@byau.edu.cn
收稿日期:2025-05-16,
修回日期:2025-06-17,
录用日期:2025-07-01,
网络出版日期:2025-09-11,
纸质出版日期:2025-10-15
移动端阅览
陈雯,陈争光,刘烁,刘金明,王河.基于近红外光谱技术的稀疏高斯过程回归模型在大豆种子发芽率预测中的应用[J].分析测试学报,2025,44(10):1-8.
CHEN Wen,CHEN Zheng-guang,LIU Shuo,LIU Jin-ming,WANG He.Application of Sparse Gaussian Process Regression Model Based on Near-infrared Spectroscopy for Soybean Seed Germination Rate Prediction[J].Journal of Instrumental Analysis,2025,44(10):1-8.
陈雯,陈争光,刘烁,刘金明,王河.基于近红外光谱技术的稀疏高斯过程回归模型在大豆种子发芽率预测中的应用[J].分析测试学报,2025,44(10):1-8. DOI: 10.12452/j.fxcsxb.250516363.
CHEN Wen,CHEN Zheng-guang,LIU Shuo,LIU Jin-ming,WANG He.Application of Sparse Gaussian Process Regression Model Based on Near-infrared Spectroscopy for Soybean Seed Germination Rate Prediction[J].Journal of Instrumental Analysis,2025,44(10):1-8. DOI: 10.12452/j.fxcsxb.250516363.
为实现大豆种子发芽率的快速检测,该研究收集了16个不同种类共350个大豆种子样本,其中14个品种利用人工老化的方法获取8个不同活性梯度的样本,剩余2个品种为自然老化的样本,采集光谱数据后进行发芽试验获取其发芽率数据。采用蒙特卡洛交叉验证法(MCCV)结合偏最小二乘回归(PLSR)剔除异常样本,选择Savitzky-Golay卷积平滑结合标准正态变量变换(SG+SNV)方法对光谱数据进行预处理,然后使用无信息变量消除法(UVE)进行特征波长的选择。将基于稀疏高斯过程回归(SGPR)方法拓展至小样本、高维度样本数据的应用场景,并对比不同核函数对模型性能的影响。为验证SGPR模型优越性,同时建立高斯过程回归(GPR)、支持向量回归(SVR)和PLSR三类对照模型。结果表明:优化后的SGPR-Matern32模型在训练集(
R
²=0.973 7,RMSE=0.045 4)、验证集(
R
²=0.949 8,RMSE=0.065 0)和测试集(
R
²=0.963 6,RMSE=0.069 4)均表现出较优的预测性能,且建模效率较传统的GPR大幅提升。研究证实,近红外光谱技术结合SGPR-Matern32建模方法可显著提高大豆种子发芽率的检测效率与精度,为实现大豆种子活力无损检测提供了可靠的技术手段。
Germination rate is an important indicator for evaluating soybean seed vigor,which will directly affect the soybean harvest. In order to realize the rapid detection of soybean seed germination rate,a total of 350 soybean seed samples from 16 different species were collected. Among them,14 varieties were obtained with 8 samples of different activity gradients by artificial aging,and the remaining 2 varieties were samples of natural aging. The germination rate data of each sample were acquired by a germination test subsequent to the collection of spectral data. Anomalous samples were removed by using a combination of partial least squares regression(PLSR) and Monte Carlo cross-validation(MCCV),the Savitzky-Golay combined with the standard normal variate(SG+SNV) method was chosen to preprocess the spectral data,then uninformative variable elimination(UVE) was used for the selection of the chara
cteristic wavelengths. In this study,the sparse Gaussian process regression(SGPR) method was extended to the application scenario of small samples,application scenarios of high-dimensional sample data,as well as the effects of different kernel functions on the performance of the model. In order to verify the superiority of the SGPR model,three types of control models,Gaussian process regression(GPR),support vector regression(SVR),and PLSR,were simultaneously established. The experimental results showed that the optimization SGPR-Matern32 model exhibits better prediction performance in the training set(
R
²=0.973 7,RMSE=0.045 4),validation set(
R
²=0.949 8,RMSE=0.065 0),and test set(
R
²=0.963 6,RMSE=0.069 4),and the modeling efficiency is significantly improved compared with the regular GPR model. This study confirms that the near-infrared spectroscopy technique combined with the SGPR-Matern32 modeling method can significantly improve the detection efficiency and accuracy of soybean seed germination rate,and provides a reliable technical means to realize the nondestructive detection of soybean seed vigor.
Shi R , Luo B , Zhang H , Hou P C , Zhou Y N , Wang C . Jiangsu Agric. Sci. (石睿,罗斌,张晗,侯佩臣,周亚男,王成. 江苏农业科学), 2024 , 52 ( 7 ): 1 - 10 .
Zhao C H , Jing X Q , Wang X J , Ge C , Yao Y X . J. Maize Sci. (赵成昊,景希强,王孝杰,葛超,姚永祥. 玉米科学), 2014 , 22 ( 5 ): 109 - 114 .
Yin S X , Yang D F , Wang X Z , Gao S R , Jiang L . Mod. Agric. Sci. Technol. (尹淑欣,杨冬风,汪秀志,高树仁,姜丽 . 现代农业科技) , 2015 ,( 13 ): 20 - 21,23 .
Yang X C , Chen L F , Wang H W , Zang H C , Guo X P , Nie L . J. Instrum. Anal. (杨向春,陈丽芳,王浩伟,臧恒昌,郭学平,聂磊. 分析测试学报), 2023 , 42 ( 8 ): 943 - 951 .
Yang D F , Yin S X , Jiang L , Gao S R . J . Nucl. Agric. Sci . (杨冬风,尹淑欣,姜丽,高树仁. 核农学报), 2013 , 27 ( 7 ): 957 - 961 .
Feng X Y , Chen Z G , Yi S J , Wang P H . Spectrochim . Acta A , 2025 , 324 : 125029 .
Luo L P , Liu X X , Yin Q , Du S G , Huang Y X , Luo H L . J . Nanchang Univ .: Nat. Sci. (罗丽萍,刘星星,殷勤,杜尚广,黄学勇,罗火林. 南昌大学学报:理科版), 2017 , 41 ( 1 ): 66 - 71 .
Lu W , Li H H , Hong D L , Dang X J , Luo H . J. Jiangsu Univ .: Nat. Sci. Ed . (卢伟,李欢欢,洪德林,党晓景,罗慧. 江苏大学学报:自然科学版), 2016 , 37 ( 2 ): 183 - 187 .
Chanda S , Hazarika A K , Choudhury N , Islam S A , Manna R , Sabhapondit S , Tudu B , Bandyopadhyay R . J. Chemom. , 2019 , 33 ( 10 ): e3172 .
Xu S , Zhao Y , Wang M , Shi X . Catena , 2017 , 157 : 12 - 23 .
Wang L S , Huang Z L , Wang R J . Infrared Phys . Technol. , 2021 : 103731 .
De Santana F B , De Souza A , Poppi R J . Spectrochim. Acta A , 2018 , 191 : 454 - 462 .
Mutlu A C , Boyaci I H , Genis H E , Ozturk R , Basaran-Akgul N , Sanal T , Evlice A K . Eur. Food Res. Technol. , 2011 , 233 : 267 - 274 .
Son S , Kim D , Choul C M , Lee J , Kim B , Min C C , Kim S . Food Chem. X , 2022 , 15 : 100430 .
Lin X M , Cai K , Huang J L , Meng F X , Lin Q Y , Chen Z H . J. Instrum. Anal. (林雪梅,蔡肯,黄家立,蒙芳秀,林钦永,陈华舟. 分析测试学报), 2025 , 44 ( 6 ): 1176 - 1182 .
Yu S , Huan K , Liu X , Wang L , Cao X . Infrared Phys. Technol. , 2023 , 132 : 104730 .
Yuan J Y , Zou M J , Zhao J , Huang Y C , Yu Y G , Cui G F . J. Instrum. Anal. (袁剑英,邹明佳,赵杰,黄扬春,于耀光,崔国峰. 分析测试学报), 2025 , 44 ( 2 ): 369 - 377 .
Seeger M . Int. J. Neural Syst. , 2004 , 14 ( 02 ): 69 - 106 .
Lan T L , Zhou Y C , Sun X Y , Wang J M , Lu L Q . Sci . Surv. Mapp . (兰天龙,周迎春,孙兴宇,王建民,鲁来强. 测绘科学), 2024 , 49 ( 7 ): 21 - 28 .
Liang J H , Hu X Y , He J . Micronanoelectron . Technol. (梁晋华,胡旭宇,何瑾. 微纳电子技术), 2024 , 61 ( 12 ): 138 - 143 .
Cui C , Fearn T . J. Near Infrared Spectrosc. , 2017 , 25 ( 1 ): 5 - 14 .
Wang W , Jiang H , Liu G , Chen Q , Mei C , Li K , Huang Y . RSC Adv. , 2017 , 7 ( 40 ): 24988 - 24994 .
Chen G , Wang W , Huo C . J . Nucl. Agric. Sci. (陈刚,王威,霍聪. 海军工程大学学报), 2022 , 34 ( 5 ): 84 - 89 .
Tang M Q , Fu J J . Control Eng . China (唐美祺,付俊杰. 控制工程), 2022 , 29 ( 3 ): 447 - 454 .
Cui X , Chen Z Q . J. Shanghai Jiaotong Univ. (崔显,陈自强. 上海交通大学学报), 2024 , 58 ( 5 ): 747 - 759 .
GB/T 3543 . 4 - 1995 . Crop Seed Inspection Regulations Germination Tests. National Standards of the People's Republic of China(农作物种子检验规程发芽试验 . 中华人民共和国国家标准) .
Zhao J Y , Chen Z G , Yi S J . Chin. J. Anal. Chem. (赵瑾熠,陈争光,衣淑娟. 分析化学), 2024 , 52 ( 7 ): 1028 - 1038 .
Zhu Y , Yan W , Yang X , Zhang X Y , Zhou L . Jiangsu Agric . Sci. (朱银,颜伟,杨欣,张仙义,周莉. 江苏农业科学), 2015 , 43 ( 12 ): 111 - 113 .
Wang F , Li Y Y , Peng Y K , Sun H W , Li L . Chin. J. Anal. Chem. (王凡,李永玉,彭彦昆,孙宏伟,李龙. 分析化学), 2018 , 46 ( 9 ): 1424 - 1431 .
Xiao H , Chen Z , Yi S , Liu J . Vibrational Spectrosc. , 2023 , 129 : 103595 .
Li Y Y , Huang J F . Sensors , 2021 , 21 ( 9 ): 3078 .
Chen X , Xue J , Chen X , Zhao X , Ali S , Huang G . Food Qual. Saf. , 2023 , 7 : fyac068 .
Qu G , Chen Z G , Zhang Q H . Jiangsu Agric . Sci. (曲歌,陈争光,张庆华. 江苏农业学报), 2019 , 35 ( 5 ): 1015 - 1020 .
Li Y N , Jiang D , Liu Y Y , Ding W M , Ding Q S , Zha L Y . Spectrosc . Spectral Anal. (李毅念,姜丹,刘璎瑛,丁为民,丁启朔,查良玉. 光谱学与光谱分析), 2014 , 34 ( 6 ): 1528 - 1532 .
Deng Z , Hu X , Li P , Lin X , Bian X . IEEE Trans. Power Electron. , 2021 , 37 ( 5 ): 5021 - 5031 .
Cao K , Chen Y Q , Wei Y B , Gao S , Yan K , Ding Y F . J . Beijing Univ. Aeronaut. Astronaut . (曹凯,陈阳泉,魏云博,高嵩,阎坤,丁羽菲. 北京航空航天大学学报), 2024 . Doi: 10.13700/j.bh.1001-5965.2024.0379 http://dx.doi.org/10.13700/j.bh.1001-5965.2024.0379 .
Zhang Y M , Wang H , Mao J X . China Civil Eng. J. (张一鸣,王浩,茅建校. 土木工程学报), 2022 , 55 ( 10 ): 72 - 79 .
0
浏览量
33
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构