浏览全部资源
扫码关注微信
广东药科大学 公共卫生学院,广东 广州 510310
贺锦灿,博士,副教授,研究方向:纳米材料与光谱分析,E-mail:hejincan300@163.com
收稿日期:2025-03-31,
修回日期:2025-05-08,
录用日期:2025-05-08,
纸质出版日期:2025-08-15
移动端阅览
冯瑞华,李斯迪,周思玮,白研,贺锦灿.基于适配体功能化ICPs/CDs比率荧光探针可视化检测孕酮[J].分析测试学报,2025,44(08):1641-1650.
FENG Rui-hua,LI Si-di,ZHOU Si-wei,BAI Yan,HE Jin-can.Visual Detection of Progesterone Using Aptamer Functionalized Infinite Coordination Polymers/Carbon Dots Ratio Fluorescent Probe[J].Journal of Instrumental Analysis,2025,44(08):1641-1650.
冯瑞华,李斯迪,周思玮,白研,贺锦灿.基于适配体功能化ICPs/CDs比率荧光探针可视化检测孕酮[J].分析测试学报,2025,44(08):1641-1650. DOI: 10.12452/j.fxcsxb.250331253.
FENG Rui-hua,LI Si-di,ZHOU Si-wei,BAI Yan,HE Jin-can.Visual Detection of Progesterone Using Aptamer Functionalized Infinite Coordination Polymers/Carbon Dots Ratio Fluorescent Probe[J].Journal of Instrumental Analysis,2025,44(08):1641-1650. DOI: 10.12452/j.fxcsxb.250331253.
该研究开发了一种核酸适配体功能化无限配位聚合物(CDs-Tb/GMP@Apt ICPs)比率荧光探针,通过适配体特异性识别孕酮。该探针中ICPs提供检测信号,碳点(CDs)提供内标信号。当加入孕酮后,ICPs在489 nm和545 nm处的荧光猝灭,CDs在445 nm处的荧光稳定,通过ICPs与CDs的荧光比率变化检测孕酮,降低背景干扰。并基于此原理,构建了一种智能手机辅助的微型管内检测装置(Lab-in-a-tube),在15~300 nmol/L范围内,孕酮浓度的对数值与试纸片颜色的比值 B/(R+G+B) 呈线性关系,检出限为7.2 nmol/L。将该方法应用于地表水与生物样品中孕酮的测定,加标回收率为97.3%~104%,相对标准偏差为1.2%~4.7%。该探针选择性好、抗干扰能力强,借助智能手机辅助检测,操作简便,降低了对大型仪器的依赖,适用于现场快速检测,为孕酮的现场检测及污染防控提供了新技术。
Progesterone is an important reproductive hormone and an environmental endocrine disruptor. In this study,a ratio fluorescence probe of aptamer-functionalized infinite coordination polymers(CDs-Tb/GMP@Apt ICPs) was developed. The aptamer can specifically recognize progesterone,the ICPs provide detection signals,and the carbon dots(CDs) provide internal standard signals. When progesterone is added,the fluorescence of ICPs is quenched at 489 nm and 545 nm,while the fluorescence of CDs remains stable at 445 nm. Progesterone was detected by the change in the fluorescence ratio of ICPs to CDs,which reduced the background interference. Based on this principle,a smartphone-assisted “Lab-in-a-tube”in-tube detection device was constructed. Within the range of 15 to 300 nmol/L,the logarithm of the progesterone concentration showed a linear relationship with the ratio B/(R+G+B) of the color of the test strip,and the limit of detection was 7.2 nmol/L. This method was applied to the determination of progesterone in surface water and biological samples. The spiked recoveries ranged from 97.3% to 104%,and the relative standard deviations were from 1.2% to 4.7%. This probe has good selectivity and strong anti-interference ability. With the assistance of smartphones for detection,it is easy to operate,reduces the dependence on large instruments,and is suitable for on-site rapid detection. It provides a new technology for on-site detection of progesterone as well as pollution prevention and control.
Monaco C F , Davis J S . Front. Physiol. , 2023 , 14 : 1254943 .
Patil S , Patil N , Hardikar-Bhat P , Dervankar O , Joglekar C , Bhat R , Nandoskar A , Yadav A , Nilawar A . Front. Public Health. , 2023 , 11 : 1181401 .
Zhao H Q , He W , Xia C Y , Yang Z . Int. J. Gynecol. Obstet. , 2024 , 168 ( 3 ): 944 - 957 .
Díaz L , Bernadez-Vallejo S V , Vargas-Castro R , Avila E , Gómez-Ceja K A , García-Becerra R , Segovia-Mendoza M , Prado-Garcia H , Lara-Sotelo G , Camacho J , Larrea F , García-Quiroz J . Int. J. Mol. Sci. , 2023 , 24 ( 3 ): 3055 .
Strickland J M , Martins J P N , Neuder L , Pursley J R . Animals , 2024 , 14 : 2235 .
Dalmaz A , Sivrikaya Özak S . Microchem. J. , 2024 , 207 : 11979 .
Aguinaga Martínez M V , Peralta F T , Domini C E , Acebal C C . Talanta , 2024 , 276 : 126189 .
Lu M L , Liang M T , Pan J K , Zhong Y Y , Zhang C G , Cui X P , Wang T T , Yan J F , Ding J L , Zhao S Q . Food Anal. Methods , 2021 , 15 ( 2 ): 541 - 551 .
Xia X S , Dong X , Du Y , Wu T T , Liu X J , Jia D H , Li F Y , Wei Q , Cai B . Anal. Chem. , 2025 , 97 ( 6 ): 3720 - 3728 .
Cui H Y , Lu H , Yang J , Fu Y , Huang Y , Li L , Ding Y P . J. Fluoresc. , 2022 , 32 ( 3 ): 927 - 936 .
Cao L , Yu L , Yue J , Zhang Y , Ge M F , Li L , Yang R . Mater. Lett. , 2020 , 271 : 127760 .
Qiu P P , Yuan P , Deng Z C , Su Z Q , Bai Y , He J C . Microchim. Acta , 2021 , 188 ( 10 ): 322 .
Zhou S W , Qiu P P , Feng R H , Zhang J H , Su Z Q , Bai Y , He J C . Talanta , 2025 , 287 : 127663 .
Yang B W , Li J C , Li Y T , Zhang M M , Zhu J X , Zhou T S , Deng J J . Sep. Purif. Technol. , 2022 , 299 : 121741 .
Huang Z S , Wang Y X , Yao D , Wu J H , Hu Y Q , Yuan A H . Nat. Commun. , 2021 , 12 ( 1 ): 145 .
Zhu J X , Wu Y Y , Xue C Y , Zhang M M , Zhang Y L , Zhang X F , Zhou T S , Deng J J . Chem. Eng. J. , 2024 , 500 : 156839 .
Wang T M , Hu J , Xu J Y , Ji Y B , Li R J . ACS Appl. Mater. , 2023 , 15 ( 44 ): 51823 - 51832 .
Zeng H H , Yu K , Huang J , Liu F , Zhang Z Y , Chen S P , Zhang F , Guan S P , Qiu L . Colloids Surf. B , 2021 , 204 : 111796 .
Wu X R , Ruan C , Zhou S Q , Zou L N , Wang R , Li G P . Spectrochim. Acta A , 2024 , 317 : 124410 .
Huo Z P , Xu W Q , Xu S P . J. Instrum. Anal . (霍泽鹏,徐蔚青,徐抒平. 分析测试学报), 2024 , 43 ( 1 ): 147 - 156 .
Liu H C , Lei X M , Zhu L , Chen L G , Ding L . Talanta , 2025 , 286 : 127542 .
Liu C , Lu D K , You X R , Shi G Y , Deng J J , Zhou T S . Anal. Chim. Acta , 2020 , 1105 : 147 - 154 .
Gao M , Bian C , Wang J X , Liu Y , Li Z H , Zhao Y T , Wang X D . Food Chem. , 2025 , 468 : 142349 .
Zhong Z H , Huo B Y , Xia L , He J C , Li G K . Chin. J. Anal. Chem. (钟子惠,霍冰洋,夏凌,贺锦灿,李攻科. 分析化学), 2025 , 53 ( 2 ): 195 - 203 .
Zhu Y H , Yao X L , Yan K , Chen Y X , Zhang J D . Biosens. Bioelectron. , 2023 , 223 : 115020 .
Zhang Y Y , Wu M , Wang Y Q , He X W , Li W Y , Feng X Z . Talanta , 2013 , 117 : 196 - 202 .
Araújo G M , Cardoso M A , Codognoto L , Brett C M A , Simões F R . ECS Adv. , 2023 , 2 ( 1 ): 6504 .
Tan C , Schenk J A , Gajovic-Eichelmann N , Sellrie F , Bier F F . Talanta , 2015 , 134 : 508 - 513 .
Zan M H , An S , Cao L , Liu Y L , Li L , Ge M F , Liu P , Wu Z H , Dong W F , Mei Q . Appl. Surf. Sci. , 2021 , 566 : 150686 .
0
浏览量
59
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构