浏览全部资源
扫码关注微信
1.华北电力大学 环境科学与工程学院 北京 102206
2.中国科学院生态环境研究中心 北京 100085
孙振丽,博士,副教授,研究方向:环境分析研究,E-mail:sunzhenli1988@163.com
杜晶晶,博士,副研究员,研究方向:环境分析研究,E-mail:jjdu@rcees.ac.cn
收稿日期:2025-03-31,
修回日期:2025-04-24,
网络出版日期:2025-07-10,
纸质出版日期:2025-08-15
移动端阅览
张艺严,马静,孙振丽,杜晶晶.基于可解释深度学习及表面增强拉曼光谱的微塑料高效识别方法[J].分析测试学报,2025,44(08):1-11.
ZHANG Yi-yan,MA Jing,SUN Zhen-li,DU Jing-jing.Efficient Identification of Microplastics Based on Interpretable Deep Learning-Surface-enhanced Raman Scattering[J].Journal of Instrumental Analysis,2025,44(08):1-11.
张艺严,马静,孙振丽,杜晶晶.基于可解释深度学习及表面增强拉曼光谱的微塑料高效识别方法[J].分析测试学报,2025,44(08):1-11. DOI: 10.12452/j.fxcsxb.250331247.
ZHANG Yi-yan,MA Jing,SUN Zhen-li,DU Jing-jing.Efficient Identification of Microplastics Based on Interpretable Deep Learning-Surface-enhanced Raman Scattering[J].Journal of Instrumental Analysis,2025,44(08):1-11. DOI: 10.12452/j.fxcsxb.250331247.
微塑料(MPs)污染已成为全球环境的重大挑战。传统检测方法在MPs检测中存在诸多局限,迫切需要开发无需复杂前处理的高灵敏检测技术。为解决MPs检测难题,该研究构建了一种“表面增强拉曼散射基底捕获-深度学习识别-梯度加权类激活映射(Grad-CAM)解释”的MPs新型检测方法。研究结果表明,金纳米海绵基底可有效捕获MPs,数据增强与预处理技术可有效提高模型的预测精度。基于一维卷积神经网络(1D-CNN)的多分支二分类深度学习网络对MPs的分类准确率可达85%,显著高于机器学习模型与常规1D-CNN模型。Grad-CAM分析可清晰展示模型决策依据及误判原因。该方法在实际环境水样及混合样本中验证有效,具有较强抗干扰性能与实用性;所用基底材料来源广泛、制备工艺简便,具有成本优势与良好的应用潜力。
Microplastic(MPs) pollution has become a major challenge to the global environment. Traditional methods have many limitations in detection of microplastics,highlighting the urgent need for highly sensitive detection technology without complex preprocessing. In this study,a novel framework with surface-enhanced Raman scattering substrate capture,deep learning recognition,and gradient-weighted class activation mapping(Grad-CAM) interpretation was constructed to solve the problem of MPs detection. The results show that the Au nanosponge substrate can effectively capture MPs. The data enhancement and preprocessing techniques can effectively improve the prediction accuracy of the model. In addition,the classification accuracy of the one-dimensional convolutional neural network(1D-CNN)-based multi-branch binary classification network can be up to 85%,which is significantly higher than that of the machine learning model and conventional 1D-CNN model. The Grad-CAM analysis effectively elucidates the model's decision-making rationale and provides insights into the causes of misclassification. This method was effectively validated using real-world mixed microplastic samples. The substrates employed in this study are characterized by their widespread material availability,straightforward fabrication process,cost-effectiveness,and significant potential for practical applications.
Jambeck J R , Geyer R , Wilcox C , Siegler T R , Perryman M , Andrady A , Narayan R , Law K L . Science , 2015 , 347 ( 6223 ): 768 - 771 .
Nguyen B , Claveau-Mallet D , Hernandez L M , Xu E G , Farner J M , Tufenkji N . Acc. Chem. Res. , 2019 , 52 ( 4 ): 858 - 866 .
Weng Y , Yan H , Nan X , Sun H , Shi Y , Zhang Y , Zhang N , Zhao X , Liu B . J. Hazard. Mater. , 2024 , 470 : 134219 .
Wang Z M , Wagner J , Ghosal S , Bedi G , Wall S . Sci. Total Environ. , 2017 , 603 : 616 - 626 .
Peters C A , Hendrickson E , Minor E C , Schreiner K , Halbur J , Bratton S P . Mar. Pollut. Bull. , 2018 , 137 : 91 - 95 .
Fan C , Huang Y Z , Lin J N , Li J . Environ. Technol. Innovation , 2021 , 23 : 101798 .
Langer J , Jimenez de Aberasturi D , Aizpurua J , Alvarez-Puebla R A , Auguié B , Baumberg J J , Bazan G C , Bell S E J , Boisen A , Brolo A G , Choo J , Cialla-May D , Deckert V , Fabris L , Faulds K , García de Abajo F J , Goodacre R , Graham D , Haes A J , Haynes C L , Huck C , Itoh T , Käll M , Kneipp J , Kotov N A , Kuang H , Le Ru E C , Lee H K , Li J F , Ling X Y , Maier S A , Mayerhöfer T , Moskovits M , Murakoshi K , Nam J M , Nie S , Ozaki Y , Pastoriza-Santos I , Perez-Juste J , Popp J , Pucci A , Reich S , Ren B , Schatz G C , Shegai T , Schlücker S , Tay L L , Thomas K G , Tian Z Q , Van Duyne R P , Vo-Dinh T , Wang Y , Willets K A , Xu C , Xu H , Xu Y , Yamamoto Y S , Zhao B , Liz-Márzan L M . ACS Nano , 2020 , 14 ( 1 ): 28 - 117 .
Lin X M , Cui Y , Xu Y H , Ren B , Tian Z Q . Anal. Bioanal. Chem. , 2009 , 394 ( 7 ): 1729 - 1745 .
Yin R , Ge H , Chen H , Du J , Sun Z , Tan H , Wang S . Environ. Adv. , 2021 , 5 : 100096 .
Guo P , Wang Y , Moghaddamfard P , Meng W , Wu S , Bao Y . J. Hazard. Mater. , 2024 , 471 : 134405 .
Daidone M , Ferrantelli S , Tuttolomondo A . Neural Regener. Res. , 2024 , 19 ( 4 ): 769 - 773 .
Zhou Z , Tian D , Yang Y , Cui H , Li Y , Ren S , Han T , Gao Z . Curr. Res. Food Sci. , 2024 , 8 : 100679 .
Liu S S , Zhang B , Li X Y , Xin L , Ying G G , Chen C E . J. Instrum. Anal. (刘思思,张波,李星颖,辛蕾,应光国,陈长二. 分析测试学报), 2024 , 43 ( 8 ): 1105 - 1116 .
Resmi A N , Nazeer S S , Dhushyandhun M E , Paul W , Chacko B P , Menon R N , Jayasree R S . ACS Chem. Neurosci. , 2024 , 15 ( 24 ): 4390 - 4401 .
Leong Y X , Lee Y H , Koh C S L , Phan-Quang G C , Han X , Phang I Y , Ling X Y . Nano Lett. , 2021 , 21 ( 6 ): 2642 - 2649 .
Bajomo M M , Ju Y , Zhou J , Elefterescu S , Farr C , Zhao Y , Neumann O , Nordlander P , Patel A , Halas N J . Proc.. Natl. Acad. Sci. USA , 2022 , 119 ( 52 ): e2211406119 .
Fang G , Hasi W , Sha X , Cao G , Han S , Wu J , Lin X , Bao Z . J. Phys. Chem. Lett. , 2023 , 14 ( 32 ): 7290 - 7298 .
Lussier F , Thibault V , Charron B , Wallace G Q , Masson J F . TrAC-Trends . Anal. Chem. , 2020 , 124 : 115796 .
Hassija V , Chamola V , Mahapatra A , Singal A , Goel D , Huang K , Scardapane S , Spinelli I , Mahmud M , Hussain A . Cognit. Comput. , 2024 , 16 ( 1 ): 45 - 74 .
Rasheed K , Qayyum A , Ghaly M , Al-Fuqaha A , Razi A , Qadir J . Comput. Biol. Med. , 2022 , 149 : 106043 .
Selvaraju R R , Cogswell M , Das A , Vedantam R , Parikh D , Batra D . Int. J. Comput. Vision , 2020 , 128 ( 2 ): 336 - 359 .
Xu J , Du J , Jing C , Zhang Y , Cui J . ACS Appl. Mater. Interfaces , 2014 , 6 ( 9 ): 6891 - 6897 .
Asemani M , Rabbani A R . J. Pet. Sci. Eng. , 2020 , 185 : 106618 .
Dong S , Wang P , Abbas K . Comput. Sci. Rev. , 2021 , 40 : 100379 .
Wang G , Peng L , Yu B , Chen S , Ge Z , Uyama H . J. Ind. Eng. Chem. , 2018 , 62 : 192 - 196 .
Amendola V , Pilot R , Frasconi M , Marago O M , Iati M A . J. Phys.Condens. Matter , 2017 , 29 ( 20 ): 203002 .
Feng Z , Zheng L , Liu J . Chemosphere , 2023 , 325 : 138312 .
Jin N , Song Y , Ma R , Li J , Li G , Zhang D . Anal. Chim. Acta , 2022 , 1197 : 339519 .
Marica I , Pinzaru S C . J. Raman Spectrosc. , 2023 , 54 ( 3 ): 305 - 313 .
Xie L , Luo S , Liu Y , Ruan X , Gong K , Ge Q , Li K , Valev V K , Liu G , Zhang L . Environ. Sci. Technol. , 2023 , 57 ( 46 ): 18203 - 18214 .
Hanley J A , McNeil B J . Radiology , 1982 , 143 ( 1 ): 29 - 36 .
0
浏览量
10
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构