浏览全部资源
扫码关注微信
中国刑事警察学院 刑事科学技术学院,辽宁 沈阳 110035
崔岚,硕士,教授,研究方向:文件检验,E-mail:cuilan0605@126.com
收稿日期:2025-03-26,
修回日期:2025-04-15,
移动端阅览
梁塬, 崔岚, 杨雪颖. 基于高光谱成像技术的喷墨打印文件形成时间鉴别研究[J/OL]. 分析测试学报, 2025.
LIANG Yuan, CUI Lan, YANG Xue-ying. the Production Timeline of Inkjet-printed Documents[J/OL]. Journal of instrumental analysis, 2025.
梁塬, 崔岚, 杨雪颖. 基于高光谱成像技术的喷墨打印文件形成时间鉴别研究[J/OL]. 分析测试学报, 2025. DOI: 10.12452/j.fxcsxb.250326231.
LIANG Yuan, CUI Lan, YANG Xue-ying. the Production Timeline of Inkjet-printed Documents[J/OL]. Journal of instrumental analysis, 2025. DOI: 10.12452/j.fxcsxb.250326231.
利用高光谱成像技术结合机器学习回归,提出了一种无损确定喷墨打印文件形成时间的方法。采集9台不同品牌、型号的喷墨打印机历时打印样品的高光谱数据,首先利用主成分分析(PCA)和偏最小二乘回归(PLSR)对高光谱数据进行降维特征提取,并通过特征提取后各主成分的降维解释率对模型进行初步解释。随后应用套索回归(LASSO)、PLSR、岭回归(RR)和贝叶斯回归(BR)4种模型,以1:4的比例确定测试集和训练集,对特征提取后的高光谱数据进行回归。结果表明,经PLSR特征提取后的LASSO回归、PLAR、RR和BR的决定系数(
<math id="M1"><msup><mrow><mi>R</mi></mrow><mrow><mn mathvariant="normal">2</mn></mrow></msup></math>
)均不低于0.99,且4种回归的平均绝对误差(MAE)、均方误差(MSE)和均方根误差(RMSE)3个指标均接近0。4种经PLSR特征提取后的
回归方法的
F
值均足够大且
p
值均小于0.001,达极显著水平。其中PLSR和BR的回归效果优于LASSO和RR。进一步通过PLSR权重系数解释了主成分与波段的关联,以明确关键光谱波段的作用。回归效果检测结果的
<math id="M2"><msup><mrow><mi>R</mi></mrow><mrow><mn mathvariant="normal">2</mn></mrow></msup></math>
均大于0.9,且显著性检验的
p
值均小于0.05,说明模型对因变量的解释具有极显著的统计学意义,同时检测误差在合理范围内。结果显示,高光谱成像技术能够无损、准确、快速地判断喷墨打印文件的制成时间,可应用于喷墨打印机打印文件形成时间鉴别。
This study proposes a novel nondestructive methodology for determining the formation time of inkjet-printed documents through the integration of hyperspectral imaging technology with machine learning regression algorithms. Experimental data were collected from chronologically printed samples produced by nine inkjet printers of distinct brands and models. The methodology framework comprises two principal phases: dimensionality reduction of hyperspectral data and subsequent regression modeling.In the initial phase
Principal Component Analysis (PCA) and Partial Least Squares Regression (PLSR) were employed to address the high dimensionality inherent in hyperspectral datasets. The interpretation rate of dimensional reduction of principal components derived from these dimensionality reduction techniques were systematically quantified
providing preliminary interpretability for the model architecture. This phase effectively condensed the hyperspectral information while preserving critical temporal features associated with document aging.Four advanced regression methodologies were subsequently implemented on the dimensionality-reduced data: Least Absolute Shrinkage and Selection Operator Regression (LASSO)
Partial Least Squares Regression (PLSR)
Ridge Regression (RR)
and Bayesian Regression (BR). The dataset was partitioned into training and testing subsets at a 1:4 ratio to ensure robust model validation. Quantitative evaluation metrics revealed exceptional model performance across all regression
approaches. The Coefficient of Determination (
<math id="M3"><msup><mrow><mi>R</mi></mrow><mrow><mn mathvariant="normal">2</mn></mrow></msup></math>
) values for LASSO-PLSR
PLSR
RR
and BR models consistently approached unity (
<math id="M4"><msup><mrow><mi>R</mi></mrow><mrow><mn mathvariant="normal">2</mn></mrow></msup><mo>></mo><mn mathvariant="normal">0.99</mn></math>
)
indicating near-perfect explanatory power. Furthermore
all models demonstrated minimal error metrics: Mean Absolute Error (MAE)
Mean Squared Error (MSE)
and Root Mean Squared Error (RMSE) values were all proximate to zero
confirming high predictive accuracy.Statistical significance testing yielded
F
-statistic values of substantial magnitude (
p
<
0.001) for all PLSR-based regression models
confirming the exceptional statistical validity of the results. Comparative analysis revealed superior performance characteristics in PLSR and BR models relative to LASSO and RR implementations.Further explain the relationship between principal components and spectral bands through the PLSR weight coefficients to clarify the role of key spectral bands.External validation using independent hyperspectral datasets confirmed the models' generalizability
with
<math id="M5"><msup><mrow><mi>R</mi></mrow><mrow><mn mathvariant="normal">2</mn></mrow></msup></math>
values exceeding 0.9 (
p
<
0.05) across all test scenarios. Error analysis indicated that residual variations fell within acceptable methodological thresholds
confirming measurement reliability. This investigation establishes that hyperspectral imaging technology exhibits significant potential for forensic document analysis
particularly in temporal authentication of inkjet-printed materials.
The implemented machine learning framework successfully decouples temporal signatures from complex spectral data while maintaining complete non-invasiveness. The method proposed in this article provides a new solution for the problem of dating documents
offering substantial improvements over conventional destructive chemical analysis methods.
Wang Q Y , Zhao P C , Cui L , Song H , Li Y D . Zhang Z Y . J. Instrum.Anal.(王千羽 ,赵鹏程,崔岚,宋辉,李扬动,张祉悦. 分析测试学报), 2024 , 43 ( 6 ): 858 - 865, 874 .
Wang C L , Wang Y M . Chin . J. Inorg. Anal. Chem.(王彩玲 ,王一鸣. 中国无机分析化学), 2023 , 13 ( 9 ): 986 - 992 .
Chen Y Y . China Food Saf . Mag. (陈燕雨. 食品安全导刊), 2025 , ( 3 ): 144 - 147 .
Yuan J Q , Qiu X C , Gao R , Su Z B . J . Yunnan Agric. Univ. : Nat. Sci.(袁建清,仇逊超,高睿,苏中滨. 云南农业大学学报 (自然科学)) , 2025 , 40 ( 1 ): 167 - 175 .
Zhang R , Jin W , Mu Y , Yu B W , Bai Y W , Shao Y B , Ping J L , Song P T , He X Y , Liu F , Fu L L . Spectrosc . Spectral Anal .张然,金伟,牟颖,于丙文,柏怡文,邵益波,平金良,宋鹏涛,何湘漪,刘飞,付琳琳. 光谱学与光谱分析), 2025 , 45 ( 2 ): 551 - 557 .
Wang X , Cheng Y , Zhang R Y , Fan Y , Huang J Z , Zhang Y , Yan H B . Laser Optoelectron . Prog .王鑫,程远,张若愚,樊尧,黄继忠,张悦,闫宏彬. 激光与光电子学进展), 2025 , 62 ( 10 ): 421 - 430 .
Li S , Cui L , Fu P . Chin . J. Inorg. Anal. Chem.(李硕 ,崔岚,付沛. 中国无机分析化学), 2024 , 14 ( 6 ): 826 - 835 .
Hao Y L , Zhang B . Electron . Qual . 郝艳丽 , 张彪 . 电子质量) , 2022 ,( 7 ): 143 - 147 .
Wei D , Gan D A , Luo F . Guangdong Police Sci . Technol.(魏东 ,甘德安,罗飞. 广东公安科技), 2020 , 28 ( 2 ): 16 - 19,38 .
Wang S Y , He H Y , Lv R L , He W W , Li C Y , Cai N B. . J . Forensic Sci. , 2022 , 67 ( 2 ): 550 - 561 .
Wang S Y , Yang Y Z , He W W , Li R K . J . Instrum. Anal.(王书越 ,杨玉柱,何伟文,李润康. 分析测试学报), 2021 , 40 ( 10 ): 1489 - 1496 .
Liu M , Shen S , Wang N . Chin . J. Lumin.(刘猛 ,申思,王楠. 发光学报), 2017 , 38 ( 5 ): 663 - 669 .
Sun P A , Wang B Z . J. Hunan Univ. Technol . (孙平安 ,王备战. 湖南工业大学学报), 2019 , 33 ( 1 ): 80 - 85 .
Gao L , Zhou Y Z , Wang K , Zeng Z Q , Lu Y T , Huang Y J . Geotecton . Metallog.(高乐 ,周永章,王琨,曾志强,卢宇彤,黄勇杰. 大地构造与成矿学), 2020 , 44 ( 2 ): 258 - 266 .
Tibshirani R . J. R. Stat. Soc. B , 1996 , 58 ( 1 ): 267 - 288 .
Geladi P , Kowalski B R . Anal. Chim. Acta , 1986 , 185 : 1 - 17 .
Hoerl A E , Kennard R W . Technometrics , 1970 , 12 ( 1 ): 55 - 67 .
Lindley D V , Smith A F M . J. R. Stat. Soc. B , 1972 , 34 ( 1 ): 1 - 41 .
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构