浏览全部资源
扫码关注微信
1.浙江大学 药学院,药物信息学研究所,浙江 杭州 310058
2.浙江派腾测控技术有限公司,浙江 杭州 311100
3.浙江大学智能创新药物研究院,浙江 杭州 310018
瞿海斌,博士,教授,研究方向:中药制药过程质量控制,E-mail:quhb@zju.edu.cn
收稿日期:2025-03-04,
修回日期:2025-03-29,
录用日期:2025-04-02,
纸质出版日期:2025-06-15
移动端阅览
闫豪洁,陈杭,邱林钧,卢立明,瞿海斌.基于近红外光谱的流化床制粒过程流化态值反馈控制系统的构建与性能评估[J].分析测试学报,2025,44(06):1169-1175.
YAN Hao-jie,CHEN Hang,QIU Lin-jun,LU Li-ming,QU Hai-bin.Construction and Performance Evaluation of Fluidization State Value Feedback Control System for Fluidized Bed Granulation Process Based on Near Infrared Spectroscopy[J].Journal of Instrumental Analysis,2025,44(06):1169-1175.
闫豪洁,陈杭,邱林钧,卢立明,瞿海斌.基于近红外光谱的流化床制粒过程流化态值反馈控制系统的构建与性能评估[J].分析测试学报,2025,44(06):1169-1175. DOI: 10.12452/j.fxcsxb.250304140.
YAN Hao-jie,CHEN Hang,QIU Lin-jun,LU Li-ming,QU Hai-bin.Construction and Performance Evaluation of Fluidization State Value Feedback Control System for Fluidized Bed Granulation Process Based on Near Infrared Spectroscopy[J].Journal of Instrumental Analysis,2025,44(06):1169-1175. DOI: 10.12452/j.fxcsxb.250304140.
流化床制粒在中药颗粒制剂的生产中应用广泛,但传统的制粒过程依赖操作人员对流化床内物料状态进行观察,并依据经验手动调节风量与喷液速度,存在耗时耗力、智能化水平不足等问题。为此,该文构建了一种基于近红外光谱的流化态值反馈控制系统,并对其控制性能进行了评估。该系统通过实时采集流化床制粒过程中的近红外光谱,分析物料运动状态并计算流化态值指标;随后,系统根据流化态值指标,按照预设的控制规则,自动调节喷雾系统中蠕动泵转速,从而实现喷液速度的动态控制,达成流化态值实时反馈控制。实验结果表明,该反馈控制系统能在流化状态恶化时有效预防流化床失稳现象的发生;在流化态值良好时加快喷液,节省制粒时间,提高生产效率。与手动控制方式相比,自动控制系统的喷液时间减少了20%以上;在流化态值控制方面,该系统与手动控制相当。其在喷液时间优化方面则展现出显著优势。此外,该控制系统在进风温度、进风量、雾化压力等工艺条件发生改变的干扰工况下,均表现出良好的适用性和稳定性。因此,所建立的基于近红外光谱的流化床制粒过程流化态值反馈控制系统,具有稳定性和可靠性,可为流化床制粒的智能制造提供有力的技术支持。
Fluidized bed granulation is widely used in the production of traditional Chinese medicine granules,but the traditional granulation process relies on the operator to observe the material state in the fluidized bed,and manually adjust the air volume and liquid injection speed according to experience,which has the problems of time-consuming,labor-intensive and insufficient intelligent level. Therefore,this paper constructed a fluidization state value feedback control system based on near infrared spectroscopy,and evaluated its control performance. The near infrared spectrum of the fluidized bed granulation process was collected in real time to analyze the movement state of the material and calculate the fluidization state value index. Then,the system automatically adjusted the peristaltic pump speed in the spray system according to the fluidization state value index and the preset control rules,thereby realizing the dynamic control of the spray speed and achieving the fluidization state value real-time feedback control. The experimental results show that the feedback control system can effectively prevent the occurrence of bed collapse when the fluidization state deteriorates. When the fluidization state value is good,the system can speed up the liquid spraying,thereby saving the granulation time and improving the production efficiency. Compared with the manual control mode,the automatic control system reduced the liquid injection time by more than 20%. In terms of fluidization state value control,the system is equivalent to the manual control,while it shows significant advantages in the optimization of liquid injection time. In addition,the control system shows good applicability and stability under the interference conditions of changing process conditions such as inlet air temperature,inlet air volume,atomization pressure,etc. Therefore,the fluidization state value feedback control system of fluidized bed granulation process based on near infrared spectroscopy established in this paper has stability and reliability,and can provide strong technical support for the intelligent manufacturing of fluidized bed granulation.
Gosavi A A , Nandgude T D , Mishra R K , Puri D B . AAPS PharmSciTech , 2024 , 25 ( 5 ): 111 .
Zhong L , Gao L L , Li L , Nei L , Wei Y H , Zhang K F , Zhang H , Yin W P , Xu D B , Zang H C . Spectrochim . Acta A , 2022 , 274 : 121078 .
Orth M , Börner M , Pietsch B S , Heinrich S . Powder Technol. , 2024 , 448 : 120274 .
Gavan A , Iurian S , Casian T , Porfire A , Porav S , Voina I , Oprea A , Tomuta I . Asian J. Pharm. Sci. , 2020 , 15 ( 4 ): 506 - 517 .
Nascimento R F , Ávila M F , Da S A G P , Kurozawa L E . Powder Technol. , 2023 , 420 : 118377 .
Fu H , Teng K X , Shen Y F , Zhao J , Qu H B . Spectrochim. Acta A , 2024 , 305 : 123441 .
Péterfi O , Madarász L , Ficzere M , Lestyán G K , Záhonyi P , Erdei G , Sipos E , Nagy Z K , Galata D L . Eur. J. Pharm. Sci. , 2023 , 189 : 106563 .
Dai M K , Li H X , Wang S W . Energy , 2024 , 313 : 133858 .
Seppelt B D , Lee J D . Int . J. Hum.-Comput. Stud. , 2019 , 125 : 66 - 80 .
Gaglio E , Bevilacqua R . Acta Astronaut. , 2025 , 228 : 274 - 284 .
Reimers T , Thies J , Stöckel P , Dietrich S , Pein H M , Quodbach J . Int. J. Pharm. , 2019 , 567 : 118452 .
Fu H , Teng K X , Zhao J , Zhang S , Qu H B . Pharmaceutics , 2023 , 15 ( 9 ): 2246 .
0
浏览量
75
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构