浏览全部资源
扫码关注微信
云南省农业科学院 药用植物研究所,云南 昆明 650200
杨绍兵,硕士,副研究员,研究方向:中药资源栽培,E-mail:ysb9-116@163. com
王元忠,博士,研究员,研究方向:中药资源开发与利用,E-mail:boletus@ 126. com
收稿日期:2025-02-20,
修回日期:2025-03-25,
录用日期:2025-03-26,
网络出版日期:2025-05-12,
纸质出版日期:2025-06-15
移动端阅览
苏俊宇,杨绍兵,王元忠.基于FT-NIR和ATR-FTIR光谱的铁皮石斛地理溯源[J].分析测试学报,2025,44(06):1-11.
SU Jun-yu,YANG Shao-bing,WANG Yuan-zhong.Geographical Origin Identification of Dendrobium officinale Based on FT-NIR and ATR-FTIR Spectroscopy[J].Journal of Instrumental Analysis,2025,44(06):1-11.
苏俊宇,杨绍兵,王元忠.基于FT-NIR和ATR-FTIR光谱的铁皮石斛地理溯源[J].分析测试学报,2025,44(06):1-11. DOI: 10.12452/j.fxcsxb.250220105.
SU Jun-yu,YANG Shao-bing,WANG Yuan-zhong.Geographical Origin Identification of Dendrobium officinale Based on FT-NIR and ATR-FTIR Spectroscopy[J].Journal of Instrumental Analysis,2025,44(06):1-11. DOI: 10.12452/j.fxcsxb.250220105.
为实现铁皮石斛地理来源的快速有效鉴别,基于衰减全反射傅里叶变换红外光谱(ATR-FTIR)和傅里叶变换近红外光谱(FT-NIR)技术,结合数据融合策略与化学计量学方法建立了铁皮石斛地理溯源模型。结果表明,FT-NIR和FT-NIR+ATR-FTIR融合数据集经二阶导数(2 nd)预处理后构建的偏最小二乘判别分析(PLS-DA)和支持向量机(SVM)模型性能最好,测试集准确率均达到100%。基于二维相关光谱(2DCOS)构建的残差卷积神经网络(ResNet)模型在训练集、测试集和外部验证集上均实现了100%的准确率。该研究为铁皮石斛地理溯源和地理标志产品保护提供了科学依据。
Dendrobium officinale
(
D. officinale
)is a precious plant with homology between medicine and food plant. Rapid and accurate identification of its geographical origin is essential to protect consumer rights and maintain market order. In order to realize rapid and effective identification of the geographical origin of
D. officinale
,a geographical traceability model of
D. officinale
was established based on attenuated total reflection Fourier transform infrared spectroscopy(ATR-FTIR) and Fourier transform near infrared spectroscopy(FT-NIR) technology,combined with data fusion strategy and chemometric methods. The results showed that the partial least squares discriminant analysis(PLS-DA) and support vector machine(SVM) models constructed on the FT-NIR and FT-NIR+ATR-FTIR fusion datasets after second derivative(2nd) preprocessing performed the best,with test set accuracy reaching 100%. The residual convolutional neural network(ResNet) model constructed based on two-dimensional correlation spectroscopy(2DCOS) achieved 100% accuracy on the training,testing and external validation sets. This study provides a scientific basis for geographical traceability of
D. officinale
and protection of geographical indication products.
Li P Y , Li L , Wang Y Z . J. Ethnopharmacol. , 2023 , 310 : 116382 .
Yang J , Kuang M T , Yang L , Huang W , Hu J M . J. Ethnopharmacol. , 2023 , 302 : 115912 .
Lai C , Huo C Y , Xu J , Han Q B , Li L F . Int. J. Biol. Macromol. , 2024 , 263 : 130315 .
Zhao Y , Zhu S T , Li Y , Niu X , Shang G X , Zhou X Q , Yin J , Bao B H , Cao Y D , Cheng F F , Li Z P , Wang R , Yao W F . J. Pharm. Biomed. Anal. , 2024 , 243 : 116077 .
Dai J , Wang W D , He F F , Yu X X , Liu Z G , Wang Y J , Zou D L . Food Res. Int. , 2025 , 203 : 115888 .
Liu Y C , Odiba A S , Yu Q , Xie J , Okoro N O , Liao G Y , Zhu X C , He B , Jin C , Fang W X , Wang B . J. Future Foods , 2025 , 5 ( 6 ): 591 - 604 .
Huang X J , Wang Z Q , Nie S P . J. Chin. Inst. Food Sci. Technol . (黄晓君,汪志强,聂少平. 中国食品学报) 2023 , 23 ( 11 ): 1 - 12 .
Hu Y , Zhao M , Qiu Y X , Ye D B , Liu Y Q , Zhang C F , Wang H B , Cheng J M . J. Nanjing Univ. Tradit. Chin. Med . (胡杨,赵勉,邱雨轩,叶德宝,刘洋清,张朝凤,王海波,程建明. 南京中医药大学学报) 2024 , 40 ( 1 ): 94 - 108 .
Zhou D Y , Hou M Y , Leng C Y , Li R J , Xing Y M , Chen J . Ind. Crops. Prod. , 2025 , 226 : 120692 .
Yang Y , She X T , Cao X Q , Yang L C , Huang J M , Zhang X , Su L J , Wu M J , Tong H B , Ji X L . Spectrochim. Acta A , 2022 , 277 : 121249 .
Dang H L , Zhang X L , Ma C M , Zhao W L , Guo H Y , Huang G L , Xie L . Med. Novel Technol. Dev. , 2022 , 16 : 100163 .
Chen Y , Li S , Jia J , Sun C D , Cui E Z , Xu Y Y , Shi F C , Tang A F . Food Chem.:X , 2024 , 24 : 101798 .
Deng G M , Liu H G , Li J Q , Wang Y Z . Food Microbiol. , 2025 , 129 : 104743 .
Li G Y , Li J Q , Liu H G , Wang Y Z . Food Chem. , 2025 , 464 : 141529 .
Zheng C M , Li J Q , Liu H G , Wang Y Z . Food Biosci. , 2023 , 56 : 103308 .
Dong J E , Zhang J , Zuo Z T , Wang Y Z . Spectrochim. Acta A , 2021 , 249 : 119211 .
Aceña V , Martín De Diego I , Fernández RR , Moguerza JM . Pat. Recognit. , 2023 , 134 : 109117 .
He G , Yang S B , Wang Y Z . Comput. Electric. Agric. , 2024 , 223 : 109127 .
Li L , Zhao Y L , Li Z M , Wang Y Z . Microchem. J. , 2022 , 178 : 107430 .
Frizon C N T , Oliveira G A , Perussello C A , Peralta-Zamora P G , Camlofski A M O , Rossa Ü B , Hoffmann-Ribani R . LWT , 2015 , 60 ( 2 ): 795 - 801 .
Guo Z M , Barimah A O , Yin L M , Chen Q S , Shi J Y , El-Seedi H R , Zou X B . Food Chem. , 2021 , 353 : 129372 .
Song C Q , An Y L , Zhao W J , Huang Y S , Zhang L J , Li L , Tang Z J , Li Z W , Liu X K , Zhang D D , Guo D A . Microchem. J. , 2025 , 209 : 112671 .
Krysa M , Szymańska-Chargot M , Zdunek A . Food Chem. , 2022 , 393 : 133430 .
Brza M A , Aziz S B , Anuar H , Ali F , Dannoun E M A , Mohammed S J , Abdulwahid R T , Al-Zangana S . Sci. Rep. , 2020 , 10 ( 1 ): 18108 .
Herath A , Tiozon R J , Kretzschmar T , Sreenivasulu N , Mahon P , Butardo V . Food Chem. , 2024 , 460 : 140728 .
Song L Y , Han Z Q , Shum P , Lau W . Spectrochim. Acta A , 2025 , 327 : 125400 .
Wiercigroch E , Szafraniec E , Czamara K , Pacia M Z , Majzner K , Kochan K , Kaczor A , Baranska M , Malek K . Spectrochim. Acta A , 2017 , 185 : 317 - 335 .
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构