浏览全部资源
扫码关注微信
1.青海民族大学 化学与材料科学学院,青海 西宁 810007
2.青海师范大学 化学化工学院, 青海 西宁 810016
张明锦,博士,教授,研究方向:化学计量学及应用,E-mail:zhangmingjin@qhnu.edu.cn
收稿日期:2025-01-24,
修回日期:2025-03-18,
录用日期:2025-03-18,
纸质出版日期:2025-06-15
移动端阅览
张世芝,王茹,赵玉霞,张明锦.紫外光谱结合化学计量学用于青稞酒的判别分析[J].分析测试学报,2025,44(06):1107-1114.
ZHANG Shi-zhi,WANG Ru,ZHAO Yu-xia,ZHANG Ming-jin.Discrimination Analysis of Qingke Liquor by Using Ultra-Violet Spectroscopy Combined with Chemometrics[J].Journal of Instrumental Analysis,2025,44(06):1107-1114.
张世芝,王茹,赵玉霞,张明锦.紫外光谱结合化学计量学用于青稞酒的判别分析[J].分析测试学报,2025,44(06):1107-1114. DOI: 10.12452/j.fxcsxb.25012461.
ZHANG Shi-zhi,WANG Ru,ZHAO Yu-xia,ZHANG Ming-jin.Discrimination Analysis of Qingke Liquor by Using Ultra-Violet Spectroscopy Combined with Chemometrics[J].Journal of Instrumental Analysis,2025,44(06):1107-1114. DOI: 10.12452/j.fxcsxb.25012461.
青稞酒是源自青藏高原、以青稞为原料的著名酒类饮品。然而,随着其市场不断扩大、品种不断增多,掺假问题已成为亟待关注的焦点。该研究聚焦于运用紫外光谱法快速鉴别地理标志保护产品互助青稞酒,提出主成分分析-支持向量机(PCA-SVM)和多模型偏最小二乘判别分析(MPLS-DA)两种方法。研究涉及中国互助青稞酒(CHQL)、其他品牌青稞酒(OBQL)和非青稞白酒(NQBL)3类样品。SVM采用两个主成分解决二元分类问题,而MPLS-DA对虚拟变量
Y
的每一列使用PLS1算法建模后,整合子模型的预测结果。PCA-SVM和MPLS-DA均成功构建了CHQL的判别模型。PCA-SVM能区分CHQL与OBQL、NQBL,但无法区分OBQL和NQBL。相比之下,MPLS-DA能正确识别所有3类样品,可以解决多分类问题。结果表明,所提方法可作为CHQL的一种简便快速鉴别手段,且MPLS-DA展现出更优的样品识别能力。
Qingke liquor,a renowned Tibetan alcoholic beverage derived from hull-less highland barley exclusively cultivated in the Qinghai-Tibetan Plateau,has witnessed a surge in sales. However,the issue of adulteration has emerged as a pressing concern demanding immediate attention. The research focused on the rapid identification methods of 'Huzhu' brand Qingke liquor,a geographical indication protection product,using ultra-violet(UV) spectroscopy. Two approaches were proposed:principal component analysis-support vector machine(PCA-SVM) and multi-model partial least squares-discriminant analysis(MPLS-DA). Three categories of liquors are considered:Chinese 'Huzhu' Qingke liquor(CHQL),other brand Qingke liquor(OBQL),and non-Qingke-based liquor(NQBL). SVM was performed using two principal components to solve the binary classification problem,while PLS1 algorithm is used for each col
umn of the dummy variable
Y
in MPLS-DA to integrate prediction results from submodels. Both PCA-SVM and MPLS-DA successfully built discrimination models for CHQL. PCA-SVM distinguishes CHQL from OBQL and NQBL but cannot differentiate between OBQL and NQBL. In contrast,MPLS-DA correctly identified all three classes of samples,and it could solve multi-classification problems. These results demonstrate that the proposed method can serve as a simple and rapid identification approach for CHQL,with MPLS-DA exhibiting superior sample recognition capabilities.
Liu W H , Zheng Y , Zhang C , Chen L , Zhuang H Y , Yao G J , Ren H , Liu Y J . Food Chem. , 2022 , 386 : 132841 .
Yu Y , Shi F F , Zhang Y , Li F , Han J S . J. Future. Foods , 2024 , 4 : 48 - 60 .
Zhang Q Y , Xie C S , Zhang S P , Wang A H , Zhu B L , Wang L , Yang Z B . Sens. Actuators B , 2005 , 110 : 370 - 376 .
Li B , Gu Y . Foods , 2023 , 12 : 1508 .
Gao W J , Fan W L , Xu Y . J. Agric. Food Chem. , 2014 , 62 : 5796 - 5804 .
Han S H , Zhang W W , Li P Y , Li X , Liu J X , Xu B C . Anal. Lett. , 2017 , 50 : 777 - 786 .
Han S H , Zhang W W , Li X , Li P Y , Liu J X . Food Anal. Method , 2016 , 9 : 2194 - 2199 .
Yin Y Y , Yang J L , Tian D W , Jiang L L , You X L , Zhang J , Cheng P Y . J. Instrum. Anal (尹艳艳,杨军林,田栋伟,蒋力力,尤小龙,张健,程平言. 分析测试学报), 2023 , 42 ( 3 ): 330 - 336 .
Su Y P , Ni B , Yang Y , Wang S T , Zhang K Z , Cao X Z . China Meas. Test (苏永平,倪斌,杨阳,王松涛,张楷正,曹新志 . 中国测试) , 2022 , 48 (S 1 ) : 102 - 107 .
Li Z , Wang P P , Huang C C , Shang H , Pan S Y , Li X J . Food Anal. Methods , 2014 , 7 : 1337 - 1344 .
Zhang Z Y , Jiang J Y , Wang G X , Wang H , Liu J , Wang H Y . Am. J. Anal. Chem. , 2015 , 6 : 395 - 401 .
Wu Z Z , Li H Y , Long J , Xu E B , Xu X M , Jin Z Y , Jiao A Q . J. Inst. Brewing , 2015 , 121 : 167 - 174 .
Li X , Tsuta M , Tanaka F , Tsukahara M , Tsukahara K . Food Anal. Method , 2020 , 13 : 726 - 734 .
Zhang Z Y , Sha M , Liu J , Wang HY . J. Inst. Brewing , 2017 , 123 : 464 – 467 .
Martins A R , Talhavini M , Vieira M L , Zacca J J , Braga J W B . Food Chem. , 2017 , 229 : 142 - 151 .
Gu H W , Zhou H H , Yi L , Wu Q , Pan Y , Peng Z X , Zhang X H , Yin X L . J. Food Compos. Anal. , 2023 , 119 : 105265 .
Giglio C , Yang Y , Kilmartin P . J. Food Compos. Anal. , 2023 , 117 : 105106 .
Zhang Z Y , Sha M , Gui D D , Ye X J , Wang H Y . Spectrosc. Spectral Anal. (张正勇,沙敏,桂冬冬,叶晓菁,王海燕. 光谱学与光谱分析), 2017 , 37 : 3122 - 3126 .
Zhou R , Chen X , Xu D , Zhang S , Huang M , Chen H , Gao P , Zeng Y , Zhang L , Dai X . Spectrochim. Acta A , 2024 , 321 : 124691 .
Goyal R , Singha P , Singh S K . Trends Food Sci. Technol. , 2024 , 146 : 104377 .
Yi C , Zhang Z , Huang T , Xiao H . Spectrochim. Acta A , 2024 , 312 : 124068 .
Huang Y , Tian J , Yang H , Hu X , Xie L , Zhou Y , Xia Y , Huang D . J. Food Compos. Anal. , 2024 , 134 : 106498 .
Zhou R , Chen X , Xu D , Zhang S , Huang M , Chen H , Gao P , Zeng Y , Zhang L , Dai X . Spectrochim. Acta A , 2024 , 321 : 124691 .
Zong X , Zhou X , Wen L , Gan S , Li L . J. Food Compos. Anal. , 2024 , 126 : 105917 .
Qian Y L , An Y , Chen S , Qian M C . J. Agric. Food Chem. , 2019 , 67 : 13870 - 13881 .
Cortés V , Cubero S , Blasco J , Aleixos N , Talens P . Food Bioprocess. Technol. , 2019 , 12 : 1021 - 1030 .
Doyle N , Swain D , Roberts J J , Cozzolino D . Food Anal. Methods , 2017 , 10 : 964 - 969 .
Li Y N . Rapid Analysis of Complex Systems by Ultraviolet Spectroscopy Combined with Chemometrics. Xining:Qinghai Normal University (李亚楠. 紫外光谱结合化学计量学在复杂体系快速分析中的应用. 西宁:青海师范大学),2020 .
Cortes C , Vapnik V . Mach. Learn. , 1995 , 20 : 273 – 297 .
Richard G B , Gavin R L . Analyst , 2010 , 135 : 230 - 267 .
Chang C C , Lin C J . ACM Trans.. Intell. Sysy. Technol. , 2011 , 2 : 27 .
Westerhuis J A , Hoefsloot H C J , Smit S , Vis A J , Smilde A K , Velzen E J J , Duijinhoven J P M , Dorsten F A . Metabolomics , 2008 , 4 : 81 - 89 .
Lee L C , Liong C Y , Jemain A A . Analyst , 2018 , 143 : 3526 - 3539 .
Zhang G , Tuo X , Peng Y , Li X , Pang T . Appl. Sci. , 2024 , 14 : 4392 .
Wang C H , Shi Z W , Shen H Q , Fang Y F , He S G , Bi H . J. Food Compos. Anal. , 2023 , 118 : 105217 .
Zhang S Z , Tang W Q , Zhang M J , Duo X H . Food Ferment. Ind . (张世芝,唐玮琦,张明锦,朵兴红. 食品与发酵工业), 2020 , 46 ( 14 ): 211 - 215 .
0
浏览量
49
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构