浏览全部资源
扫码关注微信
1.中国人民公安大学 侦查学院,北京 100038
2.国家毒品实验室北京分中心,北京 100164
何洪源,博士,教授,研究方向:法庭毒物分析,E-mail:13311296819@189.cn
李冬梅,博士,副研究员,研究方向:毒品分析,E-mail:lidongmei_1207@163.com
收稿:2024-10-09,
修回:2025-02-12,
录用:2025-02-17,
纸质出版:2025-10-15
移动端阅览
李佳文,何洪源,杨思瑶,李冬梅.响应曲面法结合高效液相色谱-串联质谱法测定干血斑中20种常见毒品[J].分析测试学报,2025,44(10):2153-2161.
LI Jia-wen,HE Hong-yuan,YANG Si-yao,LI Dong-mei.Detection of Twenty Abused Drugs in Dried Blood Spots by Response Surface Method Combined with High Performance Liquid Chromatography-Tandem Mass Spectrometry[J].Journal of Instrumental Analysis,2025,44(10):2153-2161.
李佳文,何洪源,杨思瑶,李冬梅.响应曲面法结合高效液相色谱-串联质谱法测定干血斑中20种常见毒品[J].分析测试学报,2025,44(10):2153-2161. DOI: 10.12452/j.fxcsxb.241009446.
LI Jia-wen,HE Hong-yuan,YANG Si-yao,LI Dong-mei.Detection of Twenty Abused Drugs in Dried Blood Spots by Response Surface Method Combined with High Performance Liquid Chromatography-Tandem Mass Spectrometry[J].Journal of Instrumental Analysis,2025,44(10):2153-2161. DOI: 10.12452/j.fxcsxb.241009446.
建立了干血斑(DBS)中20种毒品的高效液相色谱-串联质谱(HPLC-MS/MS)检测方法。以相对峰面积为评价指标,单因素试验法确定干血斑样本的干燥时间、干燥温度和提取溶剂考察范围;通过响应曲面法优化干血斑制备和提取条件,最终优化条件为将干血斑置于50 ℃下干燥20 min,采用甲醇-乙腈(13∶20,体积比)进行提取;采用Phenomenex Kinetex F5(100 mm×2.1 mm,2.6 μm)色谱柱进行分离,以0.1%甲酸水溶液-乙腈为流动相进行梯度洗脱,进行高效液相色谱-串联质谱分析。结果表明,干血斑中20种目标物在0.5~100 ng/mL范围内线性关系良好,相关系数大于0.99,检出限为0.1~1 ng/mL,定量下限为0.5~5 ng/mL;低、中、高3个浓度水平下的提取回收率为81.1%~124%,基质效应为84.6%~116%,相对标准偏差均小于15%;日内精密度为0.18%~9.8%,日间精密度为0.26%~9.9%。该方法简便快速,灵敏度高,目标物在干血斑中稳定性好,便于储存和运输,可满足禁毒实战干血斑中多种毒品的快速筛查需求。
A qualitative and quantitative method was established for the determination of twenty abused drugs in DBS by high performance liquid chromatography-tandem mass spectrometry(HPLC-MS/MS). The relative peak area was used as the evaluation index. The drying time,drying temperature and extraction solvent of DBS samples were determined by single factor experiment. The response surface method(RSM) was used to optimize the preparation and extraction conditions of DBS. Finally,the samples were dried at 50
℃ for 20 minutes,and then extracted with a mixture of methanol-acetonitrile(13∶20,volume ratio). The e
xtracts were separated by Phenomenex Kinetex F5(100 mm×2.1 mm,2.6 μm) chromatography column and gradient elution was carried out with an aqueous solution containing 0.1% formic acid and acetonitrile as the mobile phases. Finally,the samples were analyzed by HPLC-MS/MS. The results showed that 20 targets in DBS showed good linearity in the range of 0.5-100 ng/mL with the correlation coefficients greater than 0.99. The limits of detection(LODs) were in the range of 0.1-1 ng/mL,and the limits of quantification(LOQs) were 0.5-5 ng/mL. The extraction recoveries at three different spiked concentrations were in the range of 81.1%-124%. The matrix effects were in the range of 84.6%-116%,and the relative standard deviations(RSDs) were all less than 15%. The intra-day precision ranged from 0.18% to 9.8%,while the inter-day precision ranged from 0.26% to 9.9%. The method is simple,rapid and sensitive,and can meet the need of rapid screening of many kinds of drug abuse in dry blood spots. DBS samples are stable and can be stored for a longer period of time under room temperature conditions without special packaging,which meet the needs of first-line real-world remote sampling.
Teng A X , Liao X X , He H Y . Chem. Res. Appl . (滕傲雪,廖晓曦,何洪源. 化学研究与应用), 2018 , 30 ( 9 ): 1571 - 1576 .
Zhao P , Chang J , Wu X J , Dong L P , Liu B J , Zhang Y F . J. Instrum. Anal . (赵鹏,常靖,吴小军,董林沛,刘冰洁,张云峰. 分析测试学报), 2022 , 41 ( 2 ): 227 - 233 .
Liu F B , Zhang Y , Wang J F , Zhou P L , Hou X L . J. Instrum. Anal . (刘富邦,张瑛,王继芬,周沛龙,侯晓龙. 分析测试学报), 2024 , 43 ( 2 ): 309 - 314 .
Baillargeon R K , Mace R C . Bioeng. Transl. Med. , 2023 , 8 ( 2 ): 10476 .
Fernández-López L , Rodríguez S , Cánovas-Cabanes A , Teruel-Fernández F J , del Almela P , Rincón J P H , Navarro-Zaragoza J , Falcón M . Pharmaceuticals , 2024 , 17 ( 6 ): 799 .
Kacargil U C , Daglioglu N , Goren E I . Chromatographia , 2020 , 83 : 885 - 892 .
Jacques A L B , Santos M K , Gorziza R P , Limberger R P . Forensic Sci. Med. Pat. , 2022 , 18 ( 1 ): 86 - 102 .
Mylnikov P Y , Shchulkin A V , Seleznev S V , Pravkin S K , Abalenikhina Y V , Yakusheva E N . Pharm. Chem. J. , 2024 , 58 : 507 - 511 .
Morin L , Odoardi S , Mestria S , Rossi B , Vignali C , Valentini V , Rossi S S . Microchem. J. , 2024 , 200 : 110394 .
Guterstam J , Tavic C , Barosso M , Beck O . J. Pharm. Biomed. Anal. , 2024 , 243 : 116075 .
Whitehead H D , Hayes K L , Swartz J A , Lieberman M . Forensic Chem. , 2023 , 35 : 100512 .
Meikopoulos T , Glka H , Theodoridis G , Begou O . Molecules , 2024 , 29 ( 5 ): 975 .
Ververi C , Vincenti M , Salomone A . Biomed. Chromatogr. , 2023 , 37 ( 7 ): 5555 .
Bemvenuti L A J , Kerpel M S , Petry R G , Pereira R L . Forensic Sci. Med. Pat. , 2022 , 18 : 86 .
Almalki A H , Abduljabbar M H , Alnemari R M , Alosaimi M E , Alaqel S I , Serag A . Microchem. J. , 2024 , 205 : 111381 .
Su D B , Dong L P , Zhang Y F , Zhao P , Li K K . Chin. J. Chromatogr. (苏东斌,董林沛,张云峰,赵鹏,李开开. 色谱), 2024 , 42 ( 3 ): 245 - 255 .
Luginbuhl M , Gaugler S . Clin. Biochem. , 2020 , 82 : 33 .
Zhang J W , Wang Y H , Liu J N , Wang Y , Yang R Q . Chin. J. Anal. Chem. (张婧文,王禹衡,刘俊宁,王勇,杨瑞琴. 分析化学), 2023 , 51 ( 11 ): 1802 - 1816 .
Joye T , Sidibé J , Déglon J , Karmime A , Sporkert F , Widmer C , Favrat B , Lescuyer P , Augsburger M , Thomas A . Anal. Chim. Acta , 2019 , 1063 : 110 .
Londhe V , Rajadhyaksha M . J. Pharm. Biomed. Anal. , 2020 , 182 : 113102 .
0
浏览量
54
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构