浏览全部资源
扫码关注微信
1.安庆医学高等专科学校 药学院,安徽 安庆 246052
2.安庆师范大学 化学化工学院, 安徽 安庆 246011
任丽英,硕士,副教授,研究方向:多孔有机聚合物的制备和性能研究,E-mail:liying-ren@163.com
收稿日期:2024-10-02,
修回日期:2024-11-18,
录用日期:2024-12-12,
网络出版日期:2025-06-12,
纸质出版日期:2025-07-15
移动端阅览
任丽英,汪雅晨,桂云龙,王越,胡佳敏,耿同谋.1,6-取代芘基共轭微孔聚合物荧光传感检测苦味酸和邻硝基苯酚的研究[J].分析测试学报,2025,44(07):1-10.
REN Li-ying,WANG Ya-chen,GUI Yun-long,WANG Yue,HU Jia-min,GENG Tong-mou.The Study on 1,6-Disubstituted Pyrene-based Conjugated Microporous Polymers for Fluorescence Sensing of Picric Acid and o-Nitrophenol[J].Journal of Instrumental Analysis,2025,44(07):1-10.
任丽英,汪雅晨,桂云龙,王越,胡佳敏,耿同谋.1,6-取代芘基共轭微孔聚合物荧光传感检测苦味酸和邻硝基苯酚的研究[J].分析测试学报,2025,44(07):1-10. DOI: 10.12452/j.fxcsxb.241002435.
REN Li-ying,WANG Ya-chen,GUI Yun-long,WANG Yue,HU Jia-min,GENG Tong-mou.The Study on 1,6-Disubstituted Pyrene-based Conjugated Microporous Polymers for Fluorescence Sensing of Picric Acid and o-Nitrophenol[J].Journal of Instrumental Analysis,2025,44(07):1-10. DOI: 10.12452/j.fxcsxb.241002435.
以1,6-二取代芘的衍生物(TPDP和DTPAP)为结构性砌块,在甲磺酸催化作用下,与2,4,6-三氯-1,3,5-三嗪(TCT)进行Friedel-Crafts芳基化反应,合成了1,6-二取代芘基CMPs(TTPDP和TDTPAP),并以此为荧光传感器研究了其对硝基芳香族化合物(NACs)的荧光传感性能。TTPDP和TDTPAP容易分散在N,N-二甲基甲酰胺(DMF)和1,4-二氧六环(DOX)中,在紫外光照射下能发出明亮的青色荧光。TTPDP和TDTPAP能分别实时检测苦味酸(PA)和邻硝基苯酚(
o
-NP),并表现出较高的灵敏性和选择性。TTPDP对PA、TDTPAP对
o
-NP的猝灭系数(
K
SV
)分别为1.59×10
4
、7.80×10
3
L·mol
-1
,检出限分别为2.82×10
-12
、1.92×10
-10
mol·L
-1
。机理研究显示,TTPDP荧光检测PA是电子转移和能量转移共同作用的结果,而TDTPAP荧光检测检测
o
-NP仅为电子转移机理。1,6-二取代芘基CMPs对检测环境污染物中的NACs具有潜在的应用价值。
The 1,6-disubstituted pyrene-based conjugated microporous polymers(1,6-disubstituted pyrene-based CMPs,TTPDP and TDTPAP) were synthesized by Friedel-Crafts arylation re
actions with the 1,6-disubstituted pyrene derivatives(TPDP and DTPAP) and 2,4,6-trichloride-1,3,5-triazine(TCT) at 140 ℃ for 48 h. After washing,extracted with Soxhlet's apparatus,and vacuum drying,TTPDP and TDTPAP gave 84.85% and 82.17% yield,respectively. The structures of the 1,6-disubstituted pyrene-based CMPs were characterized with FT-IR,solid state
13
C NMR,and solid-state UV-visible spectroscopy and confirmed to be the target products. The morphology of the 1,6-disubstituted pyrene-based CMPs was analyzed by powder
x
-ray diffraction(PXRD) and scanning electron microscope(SEM).The 1,6-disubstituted pyrene-based CMPs showed an amorphous network structures which have massive structures. TTPDP and TDTPAP are insoluble in any solvent and have excellent thermal stability with the high decomposition temperatures of 563 and 573 ℃,respectively. The pore properties of 1,6-disubstituted pyrene-based CMPs were investigated by nitrogen adsorption-desorption measurements of at 77.3 K. TTPDP and TDTPAP fit the type Ⅰ and Ⅱ gas adsorption isotherms and some hysteresis,respectively. The micropore diameters of TTPDP and TDTPAP are around 1.88 and 1.22 nm,respectively,and the BET surface areas are 187.5 and 695.2 m
2
·g
-1
,
V
0.1
/
V
tot
values are higher than 0.40,respectively,indicating the predominance of micropores in the networks. The fluorescent sensing properties of TTPDP and TDTPAP for the nitroaromatic compounds(NACs) were studied. TTPDP and TDTPAP have good fluorescence properties either in the solid state or dispersed in the solvent. The TTPDP and TDTPAP are easily dispersed in N,N-dimethylformamide(DMF) and 1,4-dioxane(DOX) and can emit bright cyan fluorescence under UV light at 365 nm,which is basically consistent with the colors in the CIE diagrams. Both TTPDP and TDTPAP can detect picric acid(PA) and
o
-nitrophenol(
o
-NP) in real time,showing high sensitivity and selectivity. The qu
enching coefficient(
K
SV
) of TTPDP to PA and TDTPAP to
o
-NP are 1.59×10
4
and 7.80×10
3
L·mol
-1
,with the limit of detection(LODs) of 2.82×10
-12
and 1.92×10
-10
mol·L
-1
,respectively. The mechanisms of TTPDP and TDTPAP fluorescence sensing PA and
o
-NP were explored by theoretical calculations using the program Gaussian 09 D.01 at the B3LYP/6-31G level and contrasting the UV-visible spectra of the analytes and the fluorescence spectra of the 1,6-disubstituted pyrene-based CMPs. TTPDP fluorescence sensing PA is the result of the combined action of electron transfer and energy transfer processes,whereas TDTPAP fluorescence detecting to
o
-NP is only the electron transfer process.1,6-Disubstituted pyrene-based CMPs have potential applications for the detection of NACs in environmental pollutants.
Mondal B , Das G . React. Funct. Polym. , 2024 , 194 : 105800 .
Shen X Q , Yan B . J. Mater. Chem. A , 2024 , 12 ( 11 ): 6455 - 6464 .
Danis E Y , Bakhsh E M , Akhtar K . Int. J. Biol. Macromol. , 2020 , 159 : 276 - 286 .
Tan X P , Yang C Q , Xie Y L , Gou Q , Zhang R L , Ao E , Zhou X M , Chen Z A , Wang Q , Fu L . ACS Appl. Nano Mater. , 2024 , 7 ( 14 ): 16789 - 16798 .
Zhou H F , Li S X , Wu Y J , Chen D J , Li Y H , Zheng F Y , Yu H W . Sen. Actuators B , 2016 , 237 : 487 - 494 .
Deng P H , Liang J L , Chen D E , Cai F , Li Q Y , Wang T . J. Instrum. Anal. (邓培红,梁姣丽,陈冬儿,蔡芬,黎秋燕,王婷. 分析测试学报), 2018 , 3 ( 2 ): 204 - 210 .
Jiang L , Liang J Y , Wang Y T , Bao L C , Wu Y , Zheng Y G , Xia G P , Zhang X L , Zhang Q C . J. Instrum. Anal. (姜丽,梁峻毅,王玉彤,鲍林春,吴韵,郑玉国,夏光平,张小兰,张仟春. 分析测试学报), 2020 , 39 ( 9 ): 1065 - 1072 .
Wang Q Z , Li R , Zhao Y J , Zhe T T , Bu T , Liu Y N , Sun X Y , Hu H F , Zhang M , Zheng X H , Wang L . Talanta , 2020 , 219 : 121255 .
Huo T Y , He Y . ACS Appl . Mater. Inter. , 2024 , 16 : 21233 - 21241 .
Chen C C , Deng C H , Liu R Y , Chen L J . J . Instrum. Anal. (陈畅畅,邓崇海,刘仁勇,陈丽娟. 分析测试学报), 2024 , 43 ( 2 ): 351 - 360 .
Yuan D , Lu W , Zhao D . Adv. Mater. , 2011 , 32 : 3723 - 3725 .
Liu X M , Xu Y H , Jiang D L . J. Am. Chem. Soc. , 2012 , 134 ( 21 ): 8738 - 8741 .
Geng T M , Zhang C , Hu C , Liu M , Fei Y T , Xia H Y . New J. Chem. , 2020 , 44 : 2312 - 2320 .
Geng T M , Zhu Z M , Zhang W Y , Wang Y . J. Mater. Chem. A , 2017 , 5 : 7612 - 7617 .
Zhang Y X . J. Solid State Chem. , 2023 , 318 : 123736 .
Jiang S , Meng L C , Lv M X , Bai F Y , Tian W J , Xing Y H . Microporous Mesoporous Mater. , 2023 , 348 : 112408 .
Gao R R , Wei X S , Zhao W , Xie A M , Dong W . Anal. Chim. Acta , 2022 , 1192 : 339343 .
Cheng G , Wang K W , Wang S Y , Guo L P , Wang Z J , Jiang J X , Tan B E , Jin S B . Sci. China Mater. (程光,王科伟,汪圣尧,郭莉萍,王梓鉴,蒋加兴,谭必恩,金尚彬. 中国科学材料), 2021 , 64 ( 1 ): 149 - 174 .
Wang D X , Feng S Y , Liu H Z . Chem. Eur. J. , 2016 , 22 : 14319 - 14327 .
Lin G Q , Ding H M , Yuan D Q , Wang B S , Wang C . J. Am. Chem. Soc. , 2016 , 138 : 3302 - 3305 .
Dalapati S , Jin S , Gao J , Xu Y , Nagai A , Jiang D J . J. Am. Chem. Soc. , 2013 , 135 : 17310 - 17313 .
Guo L , Cao D P , Yun J , Zeng X F . Sens. Actuators B , 2017 , 243 : 753 - 760 .
Xia L X , Zhang H C , Feng B , Yang D Q , Bu N S , Zhang Y B , Yan Z J , Li Z N , Yuan Y , Zhao X J . Chem. J. Chin. Univ. (夏立新,张红翠,冯彬,杨东奇,布乃顺,赵云波,闫卓君,李樟楠,元野,赵晓君.高等学校化学学报), 2019 , 40 ( 12 ): 2456 - 2464 .
Wang M , Zhang H T , Guo L , Cao D P . Sens. Actuators B , 2018 , 274 : 102 - 109 .
Geng T M , Li D K , Zhu Z M , Zhang W Y , Ye S N , Zhu H , Wang Z Q . Anal. Chim. Acta , 2018 , 1011 : 77 - 85 .
Mohamed M G . Colloids Surf. A , 2024 , 680 : 132675 .
Wang M , Gao M J , Deng L L , Kang X , Zhang K L , Fu Q F , Xia Z N , Gao D . Microchem. J. , 2020 , 154 : 104590 .
Li Y K , He Y L , Guo F Y , Zhang S P , Liu Y Y , Lustig W P , Bi S M , Williams L J , Hu J , Li J . ACS Appl. Mater. Interfaces , 2019 , 11 ( 30 ): 27394 - 27401 .
Ejaz M , Mohamed M G , Kuo S W . ACS Appl. Polym. Mater. , 2024 , 6 ( 15 ): 9170 - 9179 .
Zhang Y , Wang G . Spectrochim. Acta A , 2024 , 318 : 124483 .
Guo L , Zeng X F , Cao D P . Sens. Actuators B , 2016 , 226 : 273 - 278 .
Chen Z , Chen M , Yu Y L , Wu L M . Chem. Commun. , 2017 , 53 : 1989 - 1992 .
0
浏览量
8
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构