浏览全部资源
扫码关注微信
1.长江大学 物理与光电工程学院,湖北 荆州 434023
2.浙江大学医学院附属妇产科医院吉林医院,吉林 长春 130000
3.徐州市妇幼保健院,江苏 徐州 221009
4.深圳爱湾医学检验实验室 罕见病代谢组学精准医学工程研究中心,广东 深圳 518000
5.中国科学院大学 深圳医院,广东 深圳 518000
6.北京大学第一医院儿童医学中心,北京 100034
杨 琴,博士,副教授,研究方向:化学计量学方法以及在疾病检测和机理分析中的应用研究,E-mail:yangqin00055@hnu.edu.cn
收稿日期:2024-08-18,
修回日期:2024-10-18,
录用日期:2024-10-31,
网络出版日期:2025-05-20,
纸质出版日期:2025-06-15
移动端阅览
李泽宇,刘小荧,纪国富,周伟,姜盼盼,杨琴,吴本清,杨艳玲.基于UHPLC-QE-Orbitrap MS技术结合网络分析和化学计量学用于钴胺素C缺乏症的临床表型系统表征和预测[J].分析测试学报,2025,44(06):1-10.
LI Ze-yu,LIU Xiao-ying,JI Guo-fu,ZHOU Wei,JIANG Pan-pan,YANG Qin,WU Ben-qing,YANG Yan-ling.Systematic Characterization and Prediction of Cobalamin C Deficiency Clinical Phenotypes Using UHPLC-QE-Orbitrap MS Combined with Network Analysis and Chemometrics[J].Journal of Instrumental Analysis,2025,44(06):1-10.
李泽宇,刘小荧,纪国富,周伟,姜盼盼,杨琴,吴本清,杨艳玲.基于UHPLC-QE-Orbitrap MS技术结合网络分析和化学计量学用于钴胺素C缺乏症的临床表型系统表征和预测[J].分析测试学报,2025,44(06):1-10. DOI: 10.12452/j.fxcsxb.240818321.
LI Ze-yu,LIU Xiao-ying,JI Guo-fu,ZHOU Wei,JIANG Pan-pan,YANG Qin,WU Ben-qing,YANG Yan-ling.Systematic Characterization and Prediction of Cobalamin C Deficiency Clinical Phenotypes Using UHPLC-QE-Orbitrap MS Combined with Network Analysis and Chemometrics[J].Journal of Instrumental Analysis,2025,44(06):1-10. DOI: 10.12452/j.fxcsxb.240818321.
采用UHPLC-QE-Orbitrap MS技术结合网络分析和化学计量学建立钴胺素C(cblC)缺乏症的临床表型系统表征和预测模型,利用尝试解开其复杂性。基于UHPLC-QE-Orbitrap MS技术在正、负模式下采集的血液非靶向代谢组学图谱,利用数据驱动网络算法Connect the Dots(CTD)快速搜索高连通的扰动代谢物,化学计量学算法学习其组别间复杂微小变化模式。通过对两种临床表型(癫痫和代谢综合征)的研究,结果表明CTD算法识别出的扰动代谢物子集展示出高度的临床表型特异性,且涉及的富集通路扰动均被报道与癫痫和代谢综合征的致病机制密切相关。进一步,CTD 算法能够量度高连通扰动代谢物间的协变信息,构建主要疾病模块系统地表征癫痫和代谢综合征的复杂致病机制。识别出的扰动代谢物作为特征变量集,采用5-折交叉验证,偏最小二乘判别分析、支持向量机和随机森林的受试者工作特征曲线下面积预测均值分别为0.849、0.897和0.909(癫痫),0.889、0.931和0.921(代谢综合征),马修斯相关系数预测均值分别为0.667、0.668和0.723(癫痫),0.686、0.696和0.787(代谢综合征)。上述结果表明了提出的计算方法在揭示cblC 缺乏症的临床表型复杂性和指导其个性化诊断策略方面的有效性。
An efficient computational framework was established to systematically characterize and predict clinical phenotypes of cobalamin C(cblC) deficiency,attempting to disentangle its phenotypic complexity. This framework was based on UHPLC-QE orbitrap MS technology combined with network analysis and chemometrics. UHPLC-QE orbitrap MS-based serum untargeted metabolomic profilings were collected in positive and negative ion modes,separately. Data-driven network algorithm,Connect the Dots(CTD),quickly searched high-connected perturbed metabolites. Chemometric algorithms learned subtle alteration patterns of identified perturbed metabolites between groups. Investigated by two clinical phenotypes(epilepsy and metabolic syndrome),the results showed that perturbed metabolite subset identified by CTD algorithm exhibited high specificity to clinical phenotypes. The perturbation of the involved enriched pathways was reported to be closely correlated with the pathogenesis of epilepsy and metabolic syndrome,separately. For the most significant enriched pathways,epilepsy was associated with the perturbation of sphingolipid metabolism(positive ion mode) and fatty acid biosynthesis(negative ion mode). Metabolic syndrome was associated with the perturbation of arginine and proline metabolism(positive ion mode) and purine metabolism,pyrimidine metabolism,tryptophan metabolism(negative ion mode). Further,CTD algorithm enabled the quantification of covariation information between high-connected perturbed metabolites and construction of main disease modules to systematically characterize complex pathogenic mechanisms of epilepsy and metabolic syndrome,separately. Based on the identified perturbed metabolites,partial least squares discrimination analysis (PLS-DA),support vector machine(SVM) and random forest(RF) achieved desired predictive capabilities using 5-fold cross validation. The averages of area under receiver operating characteristic curve(AUC) were 0.849,0.897 and 0.909 for epilepsy,0.889,0.931 and 0.921 for metabolic syndrome;and of Matthews correlation coefficient(MCC) that were 0.667,0.668 and 0.723 for epilepsy,0.686,0.696 and 0.787 for metabolic syndrome,respectively. All the findings demonstrated the effectiveness of the proposed computational framework in revealing the phenotypic complexity of cblC deficiency and guiding its personalized diagnosis both in positive and negative ion modes.
Carrillo-Carrasco N , Chandler R J , Venditti C P . J. Inherit. Metab. Dis. , 2012 , 35 ( 1 ): 91 - 102 .
Argmann C A , Houten S M , Zhu J , Schadt E E . Cell Metab. , 2016 , 23 ( 1 ): 13 - 26 .
He R X , Mo R , Zhang Y , Shen M , Kang L L , Chen Z H , Liu Y , Song J Q , Zhang H W , Yao H X , Liu Y P , Dong H , Jin Y , Li M Q , Qin J , Zheng H , Chen Y X , Wei H Y , Li D X , Li X Y , Zheng R X , Zhang H F , Huang M , Zhang C Y , Jiang Y W , Liang D S , Tian Y P , Yang Y L . Chin. J. Med. Genet. (贺薷萱,莫若,张尧,沈鸣,康路路,陈哲晖,刘怡,宋金青,张宏武,姚红新,刘玉鹏,董慧,金颖,李梦秋,秦炯,郑宏,陈永兴,卫海燕,李东晓,李溪远,郑荣秀,张会丰,黄敏,张春燕,姜玉武,梁德生,田亚平,杨艳玲. 中华医学遗传学杂志), 2022 , 39 ( 6 ): 565 - 570 .
Liu N , Xiao J , Gijavanekar C , Pappan K L , Glinton K E , Shayota B J , Kennedy A D , Sun Q , Sutton V R , Elsea S H . JAMA Netw. Open , 2021 , 4 ( 7 ): e2114155 .
Forny P , Bonilla X , Lamparter D , Shao W G , Plessl T , Frei C , Bingisser A , Goetze S , van Drogen A , Harshman K , Pedrioli P G A , Howald C , Poms M , Traversi F , Bürer C , Cherkaoui S , Morscher R J , Simmons L , Forny M , Xenarios I , Aebersold R , Zamboni N , Rätsch G , Dermitzakis E T , Wollscheid B , Baumgartner M R , Froese D S . Nat. Metab. , 2023 , 5 ( 1 ): 80 - 95 .
Siminea N , Czeizler E , Popescu V B , Petre I , Păun A . Curr. Opin. Struct. Biol. , 2024 , 88 : 102881 .
Bongaerts M , Bonte R , Demirdas S , Huidekoper H H , Langendonk J , Wilke M , de Valk W , Blom H J , Reinders M J T , Ruijter G J G . Mol. Genet. Metab. , 2022 , 136 ( 3 ): 199 - 218 .
Thistlethwaite L R , Li X Q , Burrage L C , Riehle K , Hacia J G , Braverman N , Wangler M F , Miller M J , Elsea S H , Milosavljevic A . Sci. Rep. , 2022 , 12 ( 1 ): 6556 .
Thistlethwaite L R , Petrosyan V , Li X Q , Miller M J , Elsea S H , Milosavljevic A . PLoS Comput. Biol. , 2021 , 17 ( 1 ): e1008550 .
Milosavljević A , Jurka J . Comput. Appl. Biosci. , 1993 , 9 ( 4 ): 407 - 411 .
Hu X Y , Bian X H , Xiang Y , Zhang H , Wei J F . Spectrosc. Spectral Anal. (胡晓云,卞希慧,项洋,张环,魏俊富.光谱学与光谱分析), 2023 , 43 ( 1 ): 78 - 84 .
Banerjee J , Taroni J N , Allaway R J , Prasad D V , Guinney J , Greene C . Nat. Methods , 2023 , 20 ( 6 ): 803 - 814 .
Xu Y X , Wang Y F , He B M , Yao Y H , Cai Q Q , Wu L H . Comput. Math. Methods Med. , 2022 , 2022 : 9883537 .
Mir F A , Ullah E , Mall R , Iskandarani A , Samra T A , Cyprian F , Parray A , Alkasem M , Abdalhakam I , Farooq F , Abou-Samra A B . Int. J. Mol. Sci. , 2022 , 23 ( 17 ): 9821 .
Silver M L , Johnson R E , Kark R M , Klein J R , Monahan E P , Zevin S S . J. Am. Med. Assoc. , 1947 , 135 ( 12 ): 757 - 760 .
Lin H , Pi Z F , Men L H , Chen W J , Liu Z Q , Liu Z Y . J. Ethnopharmacol. , 2016 , 184 : 10 - 17 .
Wei D C , Chen X P , Xu J , Yin Y L , Peng X T , Li S X , He W Z . Brain Behav. , 2023 , 13 ( 12 ): e3318 .
Wu N , Wang W B , Yi M , Cheng S Y , Wang D S . Ann. Endocrinol. , 2018 , 79 ( 1 ): 37 - 44 .
Liu X , Gao X Q , Zhang R , Liu Z Y , Shen N , Di Y B , Fang T , Li H M , Tian F S . Clin. Biochem. , 2020 , 82 : 40 - 50 .
Zhong F Y , Xu M Y , Bruno R S , Ballard K D , Zhu J J . Exp. Bio. Med. , 2017 , 242 ( 7 ): 773 - 780 .
Ponomareva D , Ivanov A , Bregestovski P . Int. J. Mol. Sci. , 2024 , 25 ( 3 ): 1934 .
Daniels S D , Boison D . Neuropharmacology , 2023 , 241 : 109756 .
Wang W T , Zhang Y Q , Yang Y B , Gu L . Evid. Based Complementary Altern. Med. , 2022 , 2022 : 3333878 .
Zhang Y R , Zhang M D , Zhu W , Yu J , Wang Q Y , Zhang J J , Cui Y R , Pan X H , Gao X , Sun H L . Redox Biol. , 2020 , 28 : 101365 .
Kaneko Y , Pappas C , Malapira T , Vale F Ĺ , Tajiri N , Borlongan C V . Cell. Physiol. Biochem. , 2017 , 41 ( 3 ): 947 - 959 .
Singh T , Goel R K . Eur. J. Pharmacol. , 2016 , 784 : 111 - 120 .
Singh K D , Osswald M , Ziesenitz V C , Awchi M , Usemann J , Imbach L L , Kohler M , Garcia-Gomez D , van den Anker J , Frey U , Datta A N , Sinues P . Commun. Med. , 2021 ,( 1 ): 21 .
Lai W , Du D , Chen L . Neurochem. Res. , 2022 , 47 ( 4 ): 844 - 859 .
Gelpi M , Mikaeloff F , Knudsen A D , Benfeitas R , Krishnan S , Svenssson A S , Høgh J , Murray D D , Ullum H , Neogi U , Nielsen S D . Aging-Us , 2021 , 13 ( 19 ): 22732 - 22751 .
He C H , An Y C , Shi L , Huang Y , Zhang H L , Fu W X , Wang M L , Shan Z Y , Du Y H , Xie J M , Huang Z Y , Sun W G , Zhao Y H , Zhao B S . Front. Pharmacol. , 2024 , 15 : 1371929 .
Zhang Y M , Zhou X H , Wan D , Lin X , Long C M , Chen W , Wu X , Yin Y L . Biol. Rhythm Res. , 2018 , 49 ( 6 ): 853 - 861 .
0
浏览量
4
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构