浏览全部资源
扫码关注微信
1.湖南师范大学 医学院,湖南 长沙 410013
2.湖南农业大学 食品科学技术学院,湖南 长沙 410128
3.湖南省农业科学院 湖南省农产品加工研究所,湖南 长沙 410125
李跑,博士,副教授,研究方向:食品分析与化学计量学研究,E-mail:lipao@live.cn
郑郁,博士,讲师,研究方向:药物分析,E-mail:lixiazheng@sina.com
纸质出版日期:2025-02-15,
收稿日期:2024-07-30,
修回日期:2024-08-20,
录用日期:2024-09-27
移动端阅览
柳薇,邱熙文,蒋立文,范伟,李跑,郑郁.基于近红外光谱技术和变量筛选-偏最小二乘判别分析方法的铁皮石斛产地无损溯源[J].分析测试学报,2025,44(02):246-252.
LIU Wei,QIU Xi-wen,JIANG Li-wen,FAN Wei,LI Pao,ZHENG Yu.Origin Traceability of Dendrobium candidum with Near Infrared Spectroscopy and Variable Selection-Partial Least Squares Discriminant Analysis[J].Journal of Instrumental Analysis,2025,44(02):246-252.
柳薇,邱熙文,蒋立文,范伟,李跑,郑郁.基于近红外光谱技术和变量筛选-偏最小二乘判别分析方法的铁皮石斛产地无损溯源[J].分析测试学报,2025,44(02):246-252. DOI: 10.12452/j.fxcsxb.240730265.
LIU Wei,QIU Xi-wen,JIANG Li-wen,FAN Wei,LI Pao,ZHENG Yu.Origin Traceability of Dendrobium candidum with Near Infrared Spectroscopy and Variable Selection-Partial Least Squares Discriminant Analysis[J].Journal of Instrumental Analysis,2025,44(02):246-252. DOI: 10.12452/j.fxcsxb.240730265.
基于近红外(NIR)光谱技术与变量筛选-偏最小二乘判别分析(PLS-DA)方法,建立了一种铁皮石斛产地的无损溯源方法。利用光栅型便携式NIR光谱仪采集了3个积分时间(25、45、65 ms)下3个产地共900份铁皮石斛枫斗的光谱。采用光谱预处理方法消除光谱中的干扰;以主成分分析(PCA)、PLS-DA方法建立了铁皮石斛产地的鉴别模型;通过竞争性自适应重加权采样法(CARS)、蒙特卡罗-无信息变量消除法(MC-UVE)及连续投影算法(SPA)筛选获得特征变量进一步提升PLS-DA模型鉴别准确性;此外,首次探究了积分时间对铁皮石斛产地溯源模型的影响。结果表明:无论是原始光谱还是优化预处理后的光谱,PCA方法均无法实现铁皮石斛产地的准确鉴别;45 ms和65 ms积分时间的PLS-DA模型可以实现石斛产地的100%鉴别分析;CARS和MC-UVE模型显著优于SPA模型,可在获得较少变量数的前提下实现石斛产地的100%鉴别分析。以上结果表明,基于便携式NIR光谱技术与变量筛选-PLS-DA方法可实现对铁皮石斛产地的准确鉴别,为中药材的质量控制研究提供了新方向。
A non-destructive origin traceability method for
Dendrobium candidum
was established based on near infrared(NIR) spectroscopy technology and variable selection-partial least squares discriminant analysis(PLS-DA) method. 900 spectra of
Dendrobium candidum
Fengdou from three origins were collected using a grating type portable NIR spectrometer at three integration times(25 ms,45 ms,65 ms). The interferences in the spectra were eliminated using spectral pretreatment methods. A model for identifying the origin of
Dendrobium candidum
was established using principal component analysis(PCA) and PLS-DA methods. The characteristic variables were selected by competitive adaptive reweighted sampling(CARS),Monte Carlo-uninformative variable elimination(MC-UVE) and successive projections algorithm(SPA) to further improve the accuracy of the PLS-DA model. In addition,it is also the first study to investigate the impact of integration time on the models. The results showed that the PCA method cannot achieve the accurate identification of
Dendrobium candidum
origins with the original and the optimized preprocessed spectra. Using the integration times of 45 ms and 65 ms,the PLS-DA model with the optimized spectral pretreatments can achieve 100% identification of
Dendrobium candidum
origins. The CARS and MC-UVE models were significantly better than the SPA model,which can be used to achieve 100% identification of
Dendrobium candidum
origins with fewer variables. The research indicates that the portable NIR spectroscopy technology combined with variable selection-PLS-DA method can achieve accurate identification of
Dendrobium candidum
origins,providing a new direction for the quality control research of traditional Chinese medicinal materials.
近红外光谱技术铁皮石斛产地溯源变量筛选方法偏最小二乘判别分析
near infrared spectroscopyDendrobium candidumorigin traceabilityvariable selectionpartial least squares discriminant analysis
Zheng K Z,Cai Y C,Chen W J,Gao Y D,Jin J J,Wang H Z,Feng S G,Lu J J. Front. Plant Sci.,2021,12:669458.
Li L,Zhao Y L,Li Z M,Wang Y Z. Microchem. J.,2022,178:107430.
Zhao Y J,Han B X,Peng H S,Wang X,Chu S S,Dai J,Peng D Y. Microsc. Res. Techniq.,2017,80(7):22856.
Yuan Y D,Liu X,Wang J P,Zhang J C. Microsc. Res. Techniq.,2018,82(5):23191.
Chu C,Yin H M,Xia L,Cheng D P,Yan J Z,Zhu L. Molecules,2014,19:3718-3730.
Wang Y,Huang H Y,Wang Y Z. Anal. Lett.,2020,53(11):1719126.
Lin T,Chen X L,Wu G W,Sha L J,Wang J,Hu Z X,Liu H C. Int. J. Food Sci. Technol.,2023,43:e110122.
Ye Z,Dai J R,Zhang C G,Lu Y,Wu L L,Gong Amy G W,Xu H,Tsim Larl W K,Wang Z T. Evid-Based Compl. Alt.,2017,13:1-9.
Liang X J,Wang Y N,Ma J F,Sun P,Guo T,Yan S K,Xiao X. J. Instrum. Anal.(梁小娟,王娅妮,马晋芳,孙鹏,郭拓,严诗楷,肖雪. 分析测试学报),2023,42(3):307-314.
Xia Z Z,Zheng D,Xia H,Yao J J,Wang S P,Qiu J F. J. Instrum. Anal.(夏珍珍,郑丹,夏虹,姚晶晶,王胜鹏,仇建飞. 分析测试学报),2020,39(11):1371-1377.
Gu Y Q,Liu R T,Shou G Z,Zhang W Y,Zhao D X. Jiangsu J. Agric. Sci. (顾玉琦,刘瑞婷,寿国忠,张文雅,赵大旭. 江苏农业科学),2016,44(5):365-368.
An C Q,Yan X,Lu C,Zhu X H. Infrared Phys. Technol.,2021,118:103869.
Li P,Tan H Z,Xie S E,Su G L,Dong Y Q,Tang H. J. Light Ind.(李跑,谭惠珍,谢叔娥,苏光林,董怡青,唐辉. 轻工学报),2024,39(2):54-59.
Dong Y Q,Shan Y,Li P,Jiang L W,Liu X. Anal. Lett.,2022,55(16):2554-2563.
Lee L C,Liong C Y,Jemain A A. Analyst,2018,143(15):3526-3539.
Lee L C,Jemain A A. Analyst,2019,144(8):2670-2678.
Yu K Q,Zhao Y R,Liu Z Y,Li X L,Liu F,He Y. Food Bioprocess Technol.,2014,7(11):3077-3087.
Li X H,Wang S L,Shi W M,Sheng Q. Food Anal. Methods,2016,9(6):1713-1718.
Yuan R R,Liu G S,He J G,Wang G L,Fan N Y,Li Y,Sun Y R. Comput. Electron. Agric.,2021,182(7/8):106043.
Zhou Z,Li X Y,Tao H L,Gao H L. Trans. Chin. Soc. Agric. Eng.(周竹,李小昱,陶海龙,高海龙. 农业工程学报),2012,28(21):8.
Fan S X,Zhang B H,Li J B,Huang W Q,Wang C P. Biosyst. Eng.,2016,143:9-19.
Sun X D,Zhou M X,Sun Y Z. Infrared Phys. Technol.,2016,77:65-72.
Wu D,Shi H,Wang S J,He Y,Bao Y D,Liu K S. Anal. Chim. Acta,2012,726(9):57-66.
0
浏览量
44
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构