浏览全部资源
扫码关注微信
1.广州海关技术中心,广东 广州 510000
2.华南理工大学 机械与汽车工程学院,广东 广州 510641
3.无锡领声科技有限公司,江苏 无锡 214000
姜伟,博士,高级工程师,研究方向:电池均衡和电池检测,E-mail:jiangw@iqtcnet.cn
郑志军,博士,教授,研究方向:金属3D打印材料表征和电池健康状态检测,E-mail:zjzheng@scut.edu.cn
纸质出版日期:2025-02-15,
收稿日期:2024-06-17,
修回日期:2024-08-23,
录用日期:2024-09-27
移动端阅览
李浩,夏广,姜伟,陆瑞强,刘超,张佳,邓哲,郑志军.超声扫描成像检测锂电池电解液退浸润及成因分析[J].分析测试学报,2025,44(02):238-245.
LI Hao,XIA Guang,JIANG Wei,LU Rui-qiang,LIU Chao,ZHANG Jia,DENG Zhe,ZHENG Zhi-jun.Ultrasonic Scanning Imaging Detection of Lithium Battery Electrolyte Deinfiltration and Causative Analysis[J].Journal of Instrumental Analysis,2025,44(02):238-245.
李浩,夏广,姜伟,陆瑞强,刘超,张佳,邓哲,郑志军.超声扫描成像检测锂电池电解液退浸润及成因分析[J].分析测试学报,2025,44(02):238-245. DOI: 10.12452/j.fxcsxb.240617137.
LI Hao,XIA Guang,JIANG Wei,LU Rui-qiang,LIU Chao,ZHANG Jia,DENG Zhe,ZHENG Zhi-jun.Ultrasonic Scanning Imaging Detection of Lithium Battery Electrolyte Deinfiltration and Causative Analysis[J].Journal of Instrumental Analysis,2025,44(02):238-245. DOI: 10.12452/j.fxcsxb.240617137.
锂电池更好的循环性能和安全性能是电动汽车获得更广泛市场优势的迫切需要,深入了解电解液退浸润的形成机理是长寿命电池发展的关键。该文采用一种超声无损检测方法,从两个维度对市面上常用的3种包装类型的锂离子电池在使用过程中内部电解液发生的变化进行了研究。结果发现:在长度方向,极耳附近相比其他位置更容易出现电解液退浸润的情况,且正极比负极更容易出现退浸润缺陷;厚度方向上电池中间层比外层区域更容易出现退浸润现象。分析发现,这主要是由于电池材料选取与结构设计导致极耳位置具有更高的电流密度和温度,电解液发生反应消耗,加快了此区域的老化进程。最后针对这一现象对未来电池选材与设计和锂电池的发展给出了建议。
To gain a broader market advantage for electric vehicles,it is imperative to enhance the cycle performance and safety of lithium batteries. Understanding the mechanisms of electrolyte depletion is crucial for developing durable batteries. This study employs ultrasonic non-destructive testing to investigate changes in the internal electrolyte during battery usage. The study focuses on three common types of lithium-ion battery packaging available on the market:hard-shell cells,soft pack cells,and cylindrical cells. These changes were examined in detail in both the length and thickness directions. The results indicate that,regardless of whether high or low current is used for charging and discharging,all three types of batteries exhibit similar electrolyte depletion characteristics. In the length direction,the area near the electrode tabs is more prone to electrolyte depletion compared to other areas,and the positive electrode is more susceptible to depletion defects than the negative electrode. In the thickness direction,the middle layer of the battery is more prone to depletion than the outer layers. This phenomenon is mainly due to the higher current density near the electrode tabs caused by the electrical properties of the battery materials and structural design. This results in the area near the tabs remaining in a state of overcharge and overdischarge during cycling,accelerating aging in this region. Additionally,the temperature in this region is relatively higher,causing the electrolyte to react and be consumed,leading to depletion. Through detailed analysis of different battery packaging types,it was found that certain specific features in battery structural design significantly impact electrolyte depletion. Prismatic cells and cylindrical cells,due to their better structural rigidity,demonstrate superior cycle stability under higher currents and harsher usage conditions. In contrast,soft pack cells exhibit relatively poorer cycle performance. This study not only reveals the spatial distribution patterns and mechanisms of electrolyte depletion but also proposes several targeted recommendations. These include prioritizing materials with lower resistance and higher thermal stability,optimizing the design of electrode tabs to reduce local current density,and improving battery packaging processes to enhance overall thermal management capabilities. By implementing these improvements,it is expected to significantly enhance the performance and lifespan of lithium batteries,thereby advancing the development of the electric vehicle market. In summary,this study provides important theoretical foundations and practical guidance for the design and optimization of lithium ion batteries,laying a solid foundation for the widespread adoption and application of future electric vehicles.
锂离子电池超声原位检测电解液退浸润形成机理
lithium-ion batteriesin-situ ultrasonic detectionelectrolyte reabsorptionformation mechanisms
Winter M,Barnett B,Xu K. Chem. Rev.,2018,118(23):11433-11456.
Lu L G,Han X B,Li J Q,Hua J F,Ouyang M G. J. Power Sources,2013,226:272-288.
Armand M,Axmann P,Bresser D,Copley M,Edström K,Ekberg C,Guyomard D,Lestriez B,Novák P,Petranikova M,Porcher W,Trabesinger S,Wohlfahrt-Mehrens M,Zhang H. J. Power Sources,2020,479:228708.
Das U K,Shrivastava P,Tey K S,Bin Idris M Y I,Mekhilef S,Jamei E,Seyedmahmoudian M,Stojcevski A. Renewable Sustainable Energy Rev.,2020,134:110227.
Ameziane M,Mansell R,Havu V,Rinke P,van Dijken S. Adv. Funct. Mater.,2022,32(29):2113118.
Wang Q,Sun D D,Zhou X Y,Wang A P,Wang D,Zhu J L,Shen C,Liu Y,Guo B K,Wang D Y. ACS Appl. Mater. Interfaces,2020,12(23):25826-25831.
Liu J,Zhang Y,Bai J L,Zhou L F,Wang Z R. Electrochim. Acta,2023,454:142362.
Fang R,Dong P,Ge H,Fu J,Li Z,Zhang J. J. Energy Storage,2021,42:103013.
Zhang X Y,Zhang Y D,Liu J D,Yan Z H,Chen J. J. Energy Chem.,2021,63:217-229.
Jia H,Xu W. Trends Chem.,2022,4(7):627-642.
Kumai K,Miyashiro H,Kobayashi Y,Takei K,Ishikawa R. J. Power Sources,1999,81/82:715-719.
Kong W H,Li H,Huang X J,Chen L Q. J. Power Sources,2005,142(1):285-291.
Teng X,Zhan C,Bai Y,Ma L,Liu Q,Wu C,Wu F,Yang Y S,Lu J,Amine K. ACS Appl. Mater. Interfaces,2015,7(41):22751-22755.
Liu P,Yang L Y,Xiao B W,Wang H B,Li L W,Ye S H,Li Y L,Ren X Z,Ouyang X P,Hu J T,Pan F,Zhang Q L,Liu J H. Adv. Funct. Mater.,2022,32(47):2208586.
Leißing M,Peschel C,Horsthemke F,Wiemers‐Meyer S,Winter M,Nowak S. Batteries Supercaps,2021,4(11):1731-1738.
Liu J L,Bian P W,Li J,Ji W J,Hao H,Yu A S. J. Power Sources,2015,286:380-387.
Yang Y,Xu L,Yang S J,Yan C,Huang J Q. J. Energy Chem.,2022,73:394-399.
Gold L,Bach T,Virsik W,Schmitt A,Müller J,Staab T E M,Sextl G. J. Power Sources,2017,343:536-544.
Huang Z Y,Zhou Y,Deng Z,Huang K,Xu M K,Shen Y,Huang Y H. ACS Appl. Mater. Interfaces,2023,15(6):8217-8223.
Wu Y,Wang Y,Yung W K,Pecht M. Electronics,2019,8(7):751.
Deng Z,Huang Z Y,Shen Y,Huang Y H,Ding H,Luscombe A,Johnson M,Harlow J E,Gauthier R,Dahn J R. Joule,2020,4(9):2017-2029.
Huo H Y,Huang K,Luo W,Meng J T,Zhou L Y,Deng Z,Wen J Y,Dai Y M,Huang Z M,Shen Y. ACS Energy Lett.,2022,7(2):650-658.
Xu G J,Shang guan X H,Dong S M,Zhou X H,Cui G L. Angew. Chem. Int. Ed.,2020,59(9):3400-3415.
An S J,Li J L,Daniel C,Mohanty D,Nagpure S,Wood III D L. Carbon,2016,105:52-76.
Chu L H,Shi Y X,Li Z,Sun C X,Yan H,Ma J,Li X C,Liu C F,Gu J N,Liu K,Liu L H,Jiang B,Li Y F,Li M C. Nano Res.,2023,16(9):11589-11603.
Liu Q,Sun Y J,Wang S M,An Q,Duan L Y,Zhao G F,Wang C H,Doyle Davis K,Guo H,Sun X L. Mater. Today,2023,64:21-30.
An S J,Li J L,Daniel C,Mohanty D,Nagpure S,Wood D L. Carbon,2016,105:52-76.
Sungjemmenla S K V,Soni C B,Kumar V,Seh Z W. Energy Technol.,2022,10(9):2200421.
Zhang J N,Li Q H,Wang Y,Zheng J Y,Yu X Q,Li H. Energy Stor. Mater.,2018,14:1-7.
Cheng X B,Zhang R,Zhao C Z,Zhang Q. Chem. Rev.,2017,117(15):10403-10473.
Tang S,Liu Y,Li L X,Jia M,Jiang L X,Liu F Y,Ai Y,Yao C M,Gu H J. Ionics,2020,26(11):5513-5523.
Gerver R E,Meyers J P. J. Electrochem. Soc.,2011,158(7):A835.
Bartsch T,Strauss F,Hatsukade T,Schiele A,Kim A Y,Hartmann P,Janek J,Brezesinski T. ACS Energy Lett.,2018,3(10):2539-2543.
Samba A,Omar N,Gualous H,Capron O,van den Bossche P,van Mierlo J. Electrochim. Acta,2014,147:319-329.
Zhang X K,Chang X H,Shen Y D,Xiang Y. J. Energy Storage,2017,11:249-257.
Yi J,Kim U S,Shin C B,Han T,Park S. J. Electrochem. Soc.,2013,160(3):A437-A443.
Panchal S,Dincer I,Agelin Chaab M,Fraser R,Fowler M. Heat Mass Transfer.,2017,53(3):937-946.
Rong D,Zhang G D,Sun Q,Hu X Z. J. Energy Storage,2023,74:109367.
Strauss F,Teo J H,Schiele A,Bartsch T,Hatsukade T,Hartmann P,Janek J,Brezesinski T. ACS Appl. Mater. Interfaces,2020,12(18):20462-20468.
Lyu P Z,Liu X J,Liu C Z,Rao Z H. Int. J. Heat Mass Transfer.,2023,202:123770.
0
浏览量
16
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构