浏览全部资源
扫码关注微信
自然资源部第三海洋研究所 分析测试中心,福建 厦门 361005
尹希杰,博士,研究员,研究方向:稳定同位素技术与方法研究,E-mail:yinxijie@tio.org.cn
纸质出版日期:2025-02-15,
收稿日期:2024-05-28,
修回日期:2024-08-21,
录用日期:2024-09-04
移动端阅览
梁建鑫,尹希杰,李玉红,林锡煌.氨基酸单体氮稳定同位素分析测试方法研究[J].分析测试学报,2025,44(02):334-341.
LIANG Jian-xin,YIN Xi-jie,LI Yu-hong,LIN Xi-huang.Study on the Compound Specific Nitrogen Stable Isotope Determination of Amino Acids[J].Journal of Instrumental Analysis,2025,44(02):334-341.
梁建鑫,尹希杰,李玉红,林锡煌.氨基酸单体氮稳定同位素分析测试方法研究[J].分析测试学报,2025,44(02):334-341. DOI: 10.12452/j.fxcsxb.24052880.
LIANG Jian-xin,YIN Xi-jie,LI Yu-hong,LIN Xi-huang.Study on the Compound Specific Nitrogen Stable Isotope Determination of Amino Acids[J].Journal of Instrumental Analysis,2025,44(02):334-341. DOI: 10.12452/j.fxcsxb.24052880.
该研究建立了一种精准测定不同样品中氨基酸含量及其氮同位素组成的方法。首先利用 N-新戊酰基-O-异丙酯(NPP)对氨基酸进行衍生化,使其更适用于气相色谱分析。随后,采用气相色谱-质谱(GC-MS)对大豆、土壤以及标准样品中的15种氨基酸单体进行定量分析,所有目标氨基酸均获得良好的分离效果,且在1.0~16.0 μmol/L浓度范围内呈线性关系(
r
²
>
0.98)。此外,利用气相色谱-燃烧-同位素比值质谱(GC-C-IRMS)对上述样品中氨基酸的氮同位素组成(
δ
¹⁵N)进行了测定。结果表明,当进样量超过20 ng N ([N
2
+
]
m
/
z
28信号强度约为150 mV) 时,该方法可以获得稳定可靠的
δ
¹⁵N值,平均精度可达0.36‰。通过与元素分析-同位素比值质谱(EA-IRMS)的结果进行比较,两种方法的测定结果高度一致(
r
² = 0.995 4),表明NPP衍生化过程未引入明显的氮同位素分馏。最终测得大豆和土壤样品中各氨基酸的
δ
¹⁵N值分别分布在10.90‰~22.32‰和-1.92‰~12.82‰之间,标准偏差分别为 0.23‰~0.88‰和0.08‰~0.79‰,符合样品分析的精度要求。
This study investigated a method for determining the content and nitrogen isotopic composition of amino acids in different samples. Amino acids were derivatized using N-pivaloyl-O-isopropyl ester(NPP) and analyzed via gas chromatography-mass spectrometry(GC-MS) and gas chromatography-combustion-isotope ratio mass spectrometry(GC-C-IRMS). Results showed effective separation of 15 amino acid standards after NPP derivatization on GC-MS,with good linearity(
r
2
>0.98) between concentration and peak area in the range of 1.0-16.0 μmol/L. The GC-C-IRMS analysis yielded
δ
15
N values for the 15 amino acid standards with a precision of 0.22‰-0.76‰(
n
=8),comparable to those obtained by elemental analysis-isotope ratio mass spectrometry(EA-IRMS),with a difference ranging from 0.15‰ to 1.14‰. The strong correlation(
r
2
=0.995 4) between the two methods suggests that the derivatization process did not introduce significant isotopic fractionation. Stable and accurate
δ
15
N values were achieved with
an injection amount greater than 20 ng N(corresponding to a[N
2
+
]
m
/
z
28 signal intensity of approximately 150 mV),resulting in an average precision of 0.36‰. Analysis of soybean and soil samples revealed
δ
15
N values ranging from 10.90‰ to 22.32‰ and -1.92‰ to 12.82‰,respectively,with standard deviations of 0.23‰-0.88‰ and 0.08‰-0.79‰,respectively,meeting the accuracy requirements for sample analysis.
气相色谱-燃烧-同位素比值质谱(GC-C-IRMS)N-新戊酰基-O-异丙酯(NPP)氨基酸氮稳定同位素
gas chromatography-combustion-isotope ratio mass spectrometry(GC-C-IRMS)N-pivaloyl-O-isopropyl (NPP)amino acidnitrogen stable isotope
Tea I,Tcherkez G. Method Enzymol.,2017,596:113-147.
Altieri K E,Fawcett S E,Peters A J,Sigman D M,Hastings M G. Proc. Natl. Acad. Sci.,2016,113(4):925-930.
McCarthy M D,Lehman J,Kudela R. Geochim. Cosmochim. Acta,2013,103:104-120.
Batista F C,Ravelo A C,Crusius J,Casso M A,McCarthy M D. Geochim. Cosmochim. Acta,2014,142:553-569.
Itahashi Y,Ananyevskaya E,Yoneda M,Miller A R V,Nishiaki Y,Matuzeviciute G M. J. Archaeol. Sci.-Rep.,2020,33:102565.
Yun H Y,Larsen T,Choi B,Won E J,Shin K H. Ecol. Evol.,2022,12(6):e8929.
Liu H Y,Nie J,Liu Y,Wadood S A,Rogers K M,Yuan Y W,Gan R Y. Food Chem.,2023,415:135791.
Silverman S N,Phillips A A,Weiss G M,Wilkes E B,Eiler J M,Sessions A L. Org. Geochem.,2022,164:104345.
Du Y Y,Meng X J,Yang B,Song L,Zhu G X,Zhou X,Zhang Y P,Pan J,Jiang L L. J. Chin. Mass Spectrom. Soc.(杜屹原,孟宪菁,杨斌,宋亮,朱光旭,周晓,张媛萍,潘洁,江琳琳. 质谱学报),2022,43(4):512-521.
Corr L T,Berstan R,Evershed R P. Rapid Commun. Mass Spectrom.,2007,21:3759-3771.
Xu C Y,Mei X R,Li Y Z,Zhong X L. Chin. Agric. Sci. Bull. (徐春英,梅旭荣,李玉中,钟秀丽. 中国农学通报),2008,(4):151-156.
Styring A K,Kuhl A,Knowles T D J,Fraser R A,Bogaard A,Evershed R P. Rapid Commun. Mass Spectrom.,2012,26(19):2328-2334.
Shinebarger S R,Haisch M,Matthews D E. Anal. Chem.,2002,74(24):6244-6251.
Ohkouchi N,Chikaraishi Y,Close H G,Fry B,Larsen T,Madigan D J,McCarthy M D,McMahon K W,Nagata T,Naito Y I,Ogawa N O,Popp B N,Steffan S,Takano Y,Tayasu I,Wyatt A S J,Yamaguchi Y T,Yokoyama Y. Org. Geochem.,2017,113:150-174.
Metges C C,Daenzer M. Anal. Biochem.,2000,278,(2):156-164.
Chikaraishi Y,Kashiyama Y,Ogawa N O,Kitazato H,Satoh M,Nomoto S,Ohkouchi N. Org. Geochem.,2008,39(5):510-520.
Liang J X,Yin X J,Su J,Lin X H,Li Y H. J. Instrum. Anal.(梁建鑫,尹希杰,苏静,林锡煌,李玉红. 分析测试学报),2024,43(3):447-454.
Meng X J,Yang B,Li A,Jia X Y,Zhu X,Ma X,Yin S. J. Chin. Mass Spectrom. Soc.(孟宪菁,杨斌,李安,贾晓艺,朱湘,马潇,尹松. 质谱学报),2018,39(6):746-753.
Minagawa M,Egawa S,Kabaya Y,Tsuru K K. J. Mass Spectrom. Soc. Jpn.,1992,40(1):47-56.
Styring A K,Fraser R A,Bogaard A,Evershed R P. Phytochemistry,2014,97:20-29.
Styring A K,Fraser R A,Bogaard A,Evershed R P. Phytochemistry,2014,102:40-45.
Wei J E,Chen Y,Wang J,Yan S B,Zhang H H,Yang G P. Mar. Chem.,2021,230:103931.
Bol R,Ostle N J,Chenu C C,Petzke K J,Werner R A,Balesdent J. Isot. Environ. Healt. Stud.,2004,40(4):243-256.
McClelland J W,Montoya J P. Ecology,2002,83(8):2173-2180.
Xu C Y,Li Y Z,Mei X R,Zhong X L. Chin. Agric. Sci. Bull.(徐春英,李玉中,梅旭荣,钟秀丽. 中国农学通报),2009,42(2):446-453.
Chang N N,Lin L H,Tu T H,Jeng M S,Chikaraishi Y,Wang P L. PLoS One,2018,13(10):e0204753.
Yamaguchi Y T,McCarthy M D. Geochim. Cosmochim. Acta,2018,220:329-347.
Nuche-Pascual M T,Lazo J P,Ruiz-Cooley R I,Herzka S Z. Ecol. Evol.,2018,8(18):9192-9217.
Yarnes C T,Herszage J. Rapid Commun. Mass Spectrom.,2017,31(8):693-704.
Huang Q,Wu H,Schöne B R. Chem. Geol.,2023,615:121220.
0
浏览量
57
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构