ZHANG Wen-jie,JIAO An-ran,TIAN Jing,et al.Convolutional Neural Network and Support Vector Machine Models for Plastic Classification by Near-infrared Spectroscopy[J].Journal of Instrumental Analysis,2021,40(07):1062-1067.
ZHANG Wen-jie,JIAO An-ran,TIAN Jing,et al.Convolutional Neural Network and Support Vector Machine Models for Plastic Classification by Near-infrared Spectroscopy[J].Journal of Instrumental Analysis,2021,40(07):1062-1067. DOI: 10.3969/j.issn.1004-4957.2021.07.013.
Convolutional Neural Network and Support Vector Machine Models for Plastic Classification by Near-infrared Spectroscopy
Nowadays it is possible to automatically classify plastic waste by machine learning algorithms, which is of great significance for protecting the natural environment and saving resources. To establish better plastic classification models, the performances of multiplicative scatter correction-support vector machines(MSC-SVM) model and one-dimensional convolutional neural network(1D CNN) model were compared in identifying 4 types of plastic in this paper, as well as the accuracies of NIRS technique for classifying PP new raw material, PP recycled material, PE new raw material and PE recycled material, respectively. Based on the spectra data of 100 plastic samples, the experiment results showed that in validation set, the accuracy for MSC-SVM model is 90.8% while that for 1D CNN model is 91.5%. Particularly, 1D CNN model provided excellent classification results in identifying PE and PP new raw material samples with the accuracies reached up to 100%, which indicated that 1D CNN model is efficient to classify different types of plastic on small dataset.
European Plastics Converters. EuPC publishes results of its 2nd survey on the use of recycled plastics materials. [2020-10-26]. https://www.plasticsconverters.eu/post/2019/01/10/eupc-publishes-results-of-its-2nd-survey-on-the-use-of-recycled-plastics-materialshttps://www.plasticsconverters.eu/post/2019/01/10/eupc-publishes-results-of-its-2nd-survey-on-the-use-of-recycled-plastics-materials.
Shent H, Pugh R J, Forssberg E. Resour. Conserv. Recycl., 1999, 25(2): 85-109.
Wang C Q, Wang H, Fu J G, Liu Y N. Waste Manage., 2015, 41: 28-38.
Ruj B, Pandey V, Jash P, Srivastava V K. Int. J. Appl. Sci. Eng. Res., 2015, 4(4): 564-571.
Wahab D A, Hussain A, Scavino E, Mustafa M M, Basri H. Am. J. Appl. Sci., 2006, 3(7): 1924-1928.
Unnikrishnan V K, Choudhari K S, Kulkarni S D, Nayak R, Kartha V B, Santhosh C. RSC Adv., 2013, 3(48): 25872-25880.
Wang D J, Zhou X Y, Jin T M, Hu X N, Zhong J E, Wu Q T. Spectrosc. Spectral Anal.(王多加,周向阳,金同铭,胡祥娜,钟娇娥,吴启堂. 光谱学与光谱分析),2004,24(2): 447-450.
Yin F F, Yan L, Han Q X, Xu Y H. Environ. Eng.(尹凤福,闫磊,韩清新,徐衍辉. 环境工程), 2017, 35: 134-138.
Zhu S C, Chen H H, Wang M M, Guo X M, Lei L, Jin G. Adv. Ind. Eng. Polym. Res., 2019, 2: 77-81.
Zhang L, Ding X D, Hou R C. J. Anal. Methods Chem., 2020, 2020(22): 1-13.
Chen X Y, Chai Q Q, Lin N, Li X H, Wang W. Anal. Methods, 2019, 11(40): 5118-5125.
Ng W, Minasny B, Montazerolghaem M, Padarian J, Ferguson R, Bailey S, McBratney A B. Geoderma, 2019, 352: 251-267.
Lu M Y, Yang K, Song P F, Shu R X, Wang L P, Yang Y Q, Liu H, Li J H, Zhao L L, Zhang Y H. Spectrosc. Spectral Anal.(鲁梦瑶,杨凯,宋鹏飞,束茹欣,王萝萍,杨玉清,刘慧,李军会,赵龙莲,张晔晖.光谱学与光谱分析),2018, 38(12): 3724-3728.
Bakker E J, Rem P C, Fraunholcz N. Waste Manage., 2009, 29(5): 1712-1717.
Kumagai M, Suyama H, Sato T, Amano T, Ogawa N. J. Near Infrared Spectrosc., 2002, 10(4): 247-255.
Rinnan Å, Van Den Berg F, Engelsen S B. Trends Anal. Chem., 2009, 28(10):1201-1222.
Wang H Y, Li J H, Yang F L. Appl. Res. Comput.(汪海燕, 黎建辉, 杨风雷. 计算机应用研究), 2014, 31(5): 1281-1286.