1.风湿性疾病发生与干预湖北省重点实验室(湖北民族大学),湖北 恩施 445000
2.湖北民族大学 武陵山中药材检验检测中心,湖北 恩施 445000
3.湖北民族大学 医学部,湖北 恩施 445000
4.广州中医药大学 中药学院,广东 广州 510006
5.广西大学 医学院,广西 南宁 530004
扫 描 看 全 文
徐睿,钟品菲,周昌园等.基于UPLC-Q/TOF MS技术探讨竹节参总皂苷对HepG2细胞脂质代谢的改善作用[J].分析测试学报,2023,42(11):1434-1441.
XU Rui,ZHONG Pin-fei,ZHOU Chang-yuan,et al.Exploring the Improvement Effect of Total Saponins of Panax Japonicus on Lipid Metabolism in HepG2 Cells Based on UPLC-Q/TOF MS Technology[J].Journal of Instrumental Analysis,2023,42(11):1434-1441.
徐睿,钟品菲,周昌园等.基于UPLC-Q/TOF MS技术探讨竹节参总皂苷对HepG2细胞脂质代谢的改善作用[J].分析测试学报,2023,42(11):1434-1441. DOI: 10.19969/j.fxcsxb.23050301.
XU Rui,ZHONG Pin-fei,ZHOU Chang-yuan,et al.Exploring the Improvement Effect of Total Saponins of Panax Japonicus on Lipid Metabolism in HepG2 Cells Based on UPLC-Q/TOF MS Technology[J].Journal of Instrumental Analysis,2023,42(11):1434-1441. DOI: 10.19969/j.fxcsxb.23050301.
基于细胞代谢组学技术研究竹节参总皂苷改善HepG2细胞脂质代谢的机制。应用棕榈酸和油酸诱导HepG2细胞脂质沉积模型,竹节参总皂苷干预24 h后进行油红O染色和甘油三酯分析。采用改良的Bligh-Dyer法将细胞内源性代谢物分为极性和非极性部位,运用超高效液相色谱-四极杆飞行时间质谱(UPLC-Q/TOF MS)技术检测代谢物,结合多元统计分析和火山图筛选差异代谢物,并富集代谢通路。结果显示,竹节参总皂苷可显著改善HepG2细胞脂质沉积模型的脂质代谢。从极性部位鉴定了34个差异代谢物,主要为脂肪酸和氨基酸类成分;从非极性部位鉴定了28个差异代谢物,主要为磷脂酰胆碱、磷脂酰乙醇胺、神经酰胺类成分。差异代谢物在竹节参总皂苷干预后均有恢复至正常水平的趋势。该研究提示竹节参总皂苷改善HepG2细胞脂质沉积模型的脂质代谢与调控鞘脂代谢、甘油磷脂代谢、脂肪酸代谢、炎症反应密切相关。
The aim of this study was to investigate the mechanism of the total saponins of ,Panax japonicus, on improving the lipid metabolism in HepG2 cells based on cell metabolomics. The HepG2 lipid deposition model was established with a 1 mmol/L free fatty acid mixture(oleic and palmitic acid at the proportion of 2∶1). Oil red O staining and triglyceride analysis were carried out after 24 h of treatment with the total saponins of ,Panax japonicus,(50 mg/L). Total metabolites in HepG2 cells were extracted according to the improved Bligh-Dyer method and were further separated into polar and nonpolar fractions. Ultra performance liquid chromatography-quadrupole time-of-flight mass spectrometry(UPLC-Q/TOF MS) was used to detect and identify the metabolites. The Progenesis QI software was used to pre-process the data,such as baseline correction,peak alignment,peak recognition,peak extraction and peak normalization. The principal component analysis,orthogonal partial least squares discriminant analysis and volcano map analysis were used to screen the differential metabolites. Metabolic pathways were enriched by the MetaboAnalyst software. The results showed that the total saponins of ,Panax japonicas, could significantly improve the lipid accumulation induced by oleic and palmitic acid in HepG 2 cells. 34 differential metabolites were identified in polar fraction,mainly including fatty acids and amino acids. 28 differential metabolites were identified from the nonpolar fraction,mainly including phosphatidylcholines,phosphatidyl ethanolamines and ceramides. These differential metabolites tended to return to normal levels after treatment with the total saponins of ,Panax japonicus,. Differential metabolites are mainly involved in three metabolic pathways,including sphingolipid metabolism,glycerol phospholipid metabolism and unsaturated fatty acid synthesis. This study elaborated the possible mechanism of the total saponins of ,Panax japonicus, on ameliorating lipid accumulation induced by oleic and palmitic acid in HepG2 cells from the perspective of cell metabolism,which was closely related to the regulation of sphingolipid metabolism,glycerolipid metabolism,fatty acid metabolism and inflammatory response. This study provided a reference for the lipid-lowering effect study of the total saponins of ,Panax japonicus,in,vivo,.
竹节参总皂苷HepG2细胞脂质代谢细胞代谢组学超高效液相色谱-四极杆飞行时间质谱
total saponins of Panax japonicusHepG2 cellslipid metabolismcell metabolomicsultra performance liquid chromatography-quadrupole time-of-flight mass spectrometry
Chinese Pharmacopoeia Commission. Pharmacopoeia of the People's Republic of China. Beijing:China Medical Science and Technology Press(国家药典委员会. 中华人民共和国药典. 北京:中国医药科技出版社) ,2020.
Fang Z X,Zhao H,Zhao J H. Medicine Records of Tujia Nationality(Volume I). Beijing:China Medical Science and Technology Press(方志先,赵晖,赵敬华. 土家族药物志(上册). 北京:中国医药科技出版社),2007.
Zhang S P,Wang R F,Zeng W Y,Zhu W J,Zhang X F,Wu C,Song J,Zheng Y L,Chen P. J. Ethnopharmacol.,2015,166:79-85.
He Y M,Ai K,He C X,Zhang C C,Yuan D,Cai S J. China J. Chin. Mater. Med.(何毓敏,艾可,何春喜,张长城,袁丁,蔡三金. 中国中药杂志),2019,44(2):249-260.
Tu H,Qu S J,Duan L,Xiong H R,He Y M,Zhang C C,Yuan D,Liu C Q. Chin. Tradit. Herb. Drugs(涂浩,屈素君,段丽,熊海容,何毓敏,张长城,袁丁,刘朝奇. 中草药),2018,49(8):1835-1840.
Narváez-Rivas M,Zhang Q B. J. Chromatogr. A,2016,1440:123-134.
Maceyka M,Spiegel S. Nature,2014,510(7503):58-67.
Simon J,Ouro A,Ala-Ibanibo L,Presa N,Delgado T C,Martínez-Chantar M L. Int. J. Mol. Sci.,2020,21(1):40.
Morad S A F,Cabot M C. Nat. Rev. Cancer,2013,13(1):51-65.
Khan S R,Manialawy Y,Obersterescu A,Cox B J,Gunderson E P,Wheeler M B. iScience,2020,23(10):101566.
Wang S Y,Zhang J L,Zhang D,Bao X Q,Sun H. Acta Pharm. Sin. (王少媛,张金兰,张丹,鲍秀琦,孙华. 药学学报),2015,50(12):1551-1558.
Song D,Xu C,Liu R. China Oils and Fats(宋丹,许超,刘蓉. 中国油脂),2021,46(10):75-81.
Miao H,Bai X,Zhao Y Y,Pei S,Chen H,Vaziri N D. Chem. Biol. Interact.,2015,228:79-87.
Lee H,Choi J M,Cho J Y,Kim T E,Lee H J,Jung B H. Chem. Phys. Lipids,2018,214:69-83.
Li X L,Hu C,Li Y H,Yang R,Chen L,Jia Y Q. Chin. Pharmacol. Bull. (李修龙,胡诚,李云鹤,杨蓉,陈龙,贾益群. 中国药理学通报),2020,36(8):1068-1075.
Liu P,Zhu W,Chen C,Yan B,Zhu L,Chen X,Peng C. Life Sci.,2020,247:117443.
0
Views
5
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution