1.浙江省农业科学院 农产品质量安全与营养研究所,浙江 杭州 310021
2.浙江省检验检疫科学技术研究院, 浙江 杭州 310016
3.浙江锐德安正检测认证技术有限公司,浙江 杭州 310023
ZHANG Qiao-yan,associated professor,Research interest:detection technologies and quality control for the nutrition and safety of agricultural products,E-mail:yanyan0014@163.com
扫 描 看 全 文
张巧艳,张晓峰,李可等.石墨化碳黑净化柱结合HPLC-PDA和LC-MS/MS快速检测苹果汁中展青霉素[J].分析测试学报,2023,42(04):447-455.
ZHANG Qiao-yan,ZHANG Xiao-feng,LI Ke,et al.Rapid Determination of Patulin in Apple Juices by a Graphitized Carbon Black-based SPE Cartridge Coupled with HPLC-PDA and LC-MS/MS[J].Journal of Instrumental Analysis,2023,42(04):447-455.
张巧艳,张晓峰,李可等.石墨化碳黑净化柱结合HPLC-PDA和LC-MS/MS快速检测苹果汁中展青霉素[J].分析测试学报,2023,42(04):447-455. DOI: 10.19969/j.fxcsxb.23010402.
ZHANG Qiao-yan,ZHANG Xiao-feng,LI Ke,et al.Rapid Determination of Patulin in Apple Juices by a Graphitized Carbon Black-based SPE Cartridge Coupled with HPLC-PDA and LC-MS/MS[J].Journal of Instrumental Analysis,2023,42(04):447-455. DOI: 10.19969/j.fxcsxb.23010402.
基于石墨化碳黑材料制备了一种固相萃取柱(GCB柱),结合高效液相色谱-二极管阵列检测法(HPLC-PDA)和液相色谱-串联质谱法(LC-MS/MS)评估了GCB柱和4种商业化固相萃取柱(Retain AX、PAX、MAX和HLB)的净化效果,并对澄清型苹果汁中影响展青霉素准确定量的杂质进行了分析。结果发现,苹果汁经上述5种净化柱净化后,大大降低了杂质干扰,色谱图、信噪比和基质效应显著改善。其中,GCB净化为HPLC-PDA分析提供了理想的色谱图,为LC-MS/MS分析提供了可接受的基质效应(-14%)、优于HLB净化的色谱图以及与Retain AX净化相当的信噪比。建立的稳定同位素稀释-液相色谱-串联质谱法(SIDA-LC-MS/MS)可以克服基质效应和净化损失对检测结果准确性的影响。采用HPLC-PDA和SIDA-LC-MS/MS分析时,GCB净化比HLB净化的方法更灵敏;MAX、HLB和GCB净化均能得到较好的回收率(82% ~ 102%)和较小的相对标准偏差(≤ 9%)。所开发的GCB净化方法仅需上样和洗脱2步,且在重力作用下过柱仅需10 min,比其他固相萃取净化更简单快捷,净化能力良好。实际样品经GCB柱净化和HPLC-PDA、SIDA-LC-MS/MS分别分析,展青霉素的平均含量为34 μg·kg,-1,。GCB柱较好的净化效果和较低的使用成本将有助于其在展青霉素常规检测中的广泛应用。
By virtue of the strong adsorption on patulin,a graphitized carbon black-based solid phase extraction (SPE) cartridge(named as GCB cartridge) was fabricated in this paper.Meanwhile,the GCB cartridge was combined with high performance liquid chromatography-photodiode array detector(HPLC-PDA) and liquid chromatography-tandem mass spectrometry(LC-MS/MS) in turn to evaluate the cleanup effects of the home-made GCB cartridge and four commercial SPE cartridges(Retain AX,PAX,MAX and HLB),which were further applied to analysis on the various impurities in the clear apple juice that could affect the accurate quantification of patulin.The significantly improved chromatograms obtained,signal-to-noise ratios(,S,/,N,s) and matrix effects displayed their capabilities in the decrease of impurity interference.Among them,the GCB cleanup provided an ideal chromatogram in HPLC-PDA analyses,as well as an acceptable matrix effect of -14%,a chromatogram superior to the HLB cleanup and a comparable ,S,/,N, to the Retain AX cleanup in LC-MS/MS analyses.Consequently,a LC-MS/MS method with the stable isotope dilution assay(SIDA-LC-MS/MS) was developed to overcome the impacts of matrix effect and cleanup loss on the accuracy of test results.The performance characteristics of methods based on different SPE cleanups with HPLC-PDA and SIDA-LC-MS/MS,respectively,were compared.The results showed that the GCB cleanup provided a higher sensitivity than the HLB cleanup due to its lower limits of detection and quantitation,while the methods with MAX,HLB and GCB cleanup all showed better recoveries(82%-102%) and smaller relative standard deviations(≤ 9%).The developed GCB cleanup only needed two steps(i.e. loading and elution) to carry out by gravity on a SPE manifold within 10 min,which is simpler and faster than other SPE cleanups.The powerful cleanup effects were also reflected in the pigment removal of eight familiar apple juices.Furthermore,some locally moldy apples were processed into the apple juice which was verified to be a positive sample of 34 μg·kg,-1, patulin by the GCB cleanup and the analyses by HPLC-PDA and SIDA-LC-MS/MS,respectively.The better cleanup effects and lower cost of GCB cartridge would be helpful to its wide application in the routine detection of patulin.
石墨化碳黑展青霉素苹果汁净化高效液相色谱-二极管阵列检测法液相色谱-串联质谱法
graphitized carbon blackpatulinapple juicecleanupHPLC-PDALC-MS/MS
Pal S,Singh N,Ansari K M.Toxicol. Res.,2017,6:764-771.
Yuan Y,Zhuang H,Zhang T H,Liu J B.Food Control,2010,21:1488-1491.
Murillo-Arbizu M,Amézqueta S,González-Peñas E,de Cerain A L.Food Chem.,2009,113:420-423.
Saleh I,Goktepe I.Food Chem. Toxicol.,2019,129:301-311.
Markowski J,Baron A,Quéré J M L,Płocharski W.LWT-Food Sci. Technol.,2015,62:813-820.
Li X J,Li H M,Li X M,Zhang Q H.Food Chem.,2017,233:290-301.
Gökmen V,Acar J,Sarioğlu K.Anal. Chim. Acta,2005,543:64-69.
Song W L,Li C,Moezzi B.Rapid Commun. Mass Spectrom.,2013,27:671-680.
Li X J,Ma W,Zhang Q H,Li H M,Liu H W.J. Sci. Food Agric.,2021,101:1767-1771.
Cavaliere C,Foglia P,Pastorini E,Samperi R,Laganà A.J. Chromatogr. A,2006,1101:69-78.
Hao H Y,Zhou T,Koutchma T,Wu F,Warriner K.Food Control,2016,62:237-242.
Lupo S A,Romesberg R L,Lu X N.J. Chromatogr. A,2020,1629:461477.
Shephard G S,Leggott N L.J. Chromatogr. A,2000,882:17-22.
Barreira M J,Alvito G C B,Almeida C M M.Food Chem.,2010,121:653-658.
Lee T P,Sakai R,Manaf N A,Rodhi A M,Saad B.Food Control,2014,38:142-149.
Wei C Z,Yu L L,Qiao N Z,Zhao J X,Zhang H,Zhai Q X,Tian F W,Chen W.Toxicon,2020,184:83-93.
Kim C T,Hwang E S,Lee H J.Food Chem.,2007,101:401-409.
Vaclavikova M,Dzuman Z,Lacina O,Fenclova M,Veprikova Z,Zachariasova M,Hajslova J.Food Control,2015,47:577-584.
Zhang Q Y,Wang X J,Wang X M,Guo H,Chen G H,Shan Y,Fang W H.Food Anal. Methods,2021,14:922-932.
Hassan S S,Williams G A,Jaiswal A K.Curr. Res. Food Sci.,2020,3:243-255.
0
Views
7
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution