LIU Ping,JIN Dong,LI Zhe-jian,et al.Determination of 8-Oxyguanine DNA Glycosylase Using a Fluorescence Sensor Based on PET Effect[J].Journal of Instrumental Analysis,2022,41(07):1072-1077.
LIU Ping,JIN Dong,LI Zhe-jian,et al.Determination of 8-Oxyguanine DNA Glycosylase Using a Fluorescence Sensor Based on PET Effect[J].Journal of Instrumental Analysis,2022,41(07):1072-1077. DOI: 10.19969/j.fxcsxb.21100904.
Determination of 8-Oxyguanine DNA Glycosylase Using a Fluorescence Sensor Based on PET Effect
8-Oxyguanine DNA glycosylase(OGG1) is an impotant DNA repaired enzyme,which can excise 8-oxyguanine(8-oxoG),a marker of damaged DNA.Meanwhile,it is implicated in the etiology of many kinds of cancers.Here,a fluorescence sensor based on the photo-induced electron transfer(PET) effect was constructed to detect the quantities of OGG1 which depended on the change of fluorescence intensity before and after addition of the OGG1 in the system.The carefully designed DNA signal probe contained an internal 8-oxoG site and 5' end carboxyfluorescein tag,a complementary sequence as the quenching group with 3' terminal containing multiple G base.This method was simple,sensitive and specific,and it was used for the detection of OGG1 in human serum samples.The results showed that there was a good linear relationship between the fluorescence intensity change of the system and OGG1 in the concentration range of 0-60 U/mL,with a detection limit of 0.7 U/mL.The recoveries for OGG1 in spiked human blood serum samples ranged from 99.1% to 105%,with the relative standard deviations(RSDs) of 1.0%-4.3%.The sensor has the advantages of good selectivity,simple operation and low cost.
关键词
8-氧鸟嘌呤DNA糖基化酶光诱导电子转移效应荧光传感器
Keywords
8-oxyguanine DNA glycosylasephoto-induced electron transferfluorescence sensor
references
Cooke M S,Evans M D,Dizdaroglu M,Lunec J.Faseb. J.,2003,17(10):1195-1214.
Wang L J,Ma F,Tang B,Zhang C Y.Anal. Chem.,2016,88(15):7523-7529.
Ma L,Chu H Y,Wang M L,Shi D N,Zhong D Y,Li P,Tong N,Yin C J,Zhang Z D.Cancer Sci.,2012,103(7):1215-1220.
Virginia G C,Romon G,Alejandro C.Electrophoresis,2004,25(14):2219-2226.
Hollstein M C,Brooks P,Linn S,Ames B N.Proc. Natl. Acad. Sci. USA,1984,81(13):4003-4007.
Tchou J,Kasai H,Shibutani S,Chung M H,Laval J,Grolman A P,Nlshimura S.Proc. Natl. Acad. Sci. USA,1991,88(11):4690-4694.
Wu Z,Wu Z K,Tang H,Tang L J,Jiang J H.Anal. Chem.,2013,85(9):4376-4383.
Liu F Z,Gao T,Ye Z H,Yang D W,Wang Z X,Li G X.Electrochem. Commun.,2015,50:51-54.
Liu B,Yang X H,Wang K M,Tan W H.Chem. J. Chin. Univ. (刘斌,羊小海,王柯敏,谭蔚泓.高等学校化学学报),2012,33(3):486-491.
Wang X Z,Hou T,Lu T T,Li F.Anal. Chem.,2014,86(19):9626-9631.
Xiao S J,Hu P P,Li Y F,Huang C Z,Huang T,Xiao G F.Talanta,2009,79(5):1283-1286.
Hu P,Jin L H,Zhu C Z,Dong S J.Talanta,2011,85(1):713-717.
Qin J J,Wu P,Liu C X.J. Anal. Sci. (覃建军,吴鹏,柳畅先.分析科学学报),2008,24(5):577-579.
Zhang H T,Zhu Q F.Carcinog. Teratog. Mutagen. (张海涛,祝其锋.癌变·畸变·突变),2001,13(1):51-54.
He J,Liu M H,Li Y,Tang B,Zhang C Y.Chem. Sci.,2018,9(3):712-720.