1.爆炸物安全科学自治区重点实验室,中国科学院特殊环境功能材料与器件重点实验室,中国科学院新疆理化技术研究所,新疆 乌鲁木齐 830011
2.中国科学院大学 材料与光电研究中心,北京 100049
扫 描 看 全 文
万知欣,蔡珍珍,窦新存.内滤效应设计对非制式爆炸物高锰酸钾检测性能提升策略研究进展[J].分析测试学报,2022,41(02):290-298.
WAN Zhi-xin,CAI Zhen-zhen,DOU Xin-cun.Recent Progress in Sensing Performance Improvement Strategy Designvia Inner Filter Effect for Improvised Explosive Potassium Permanganate Detection[J].Journal of Instrumental Analysis,2022,41(02):290-298.
万知欣,蔡珍珍,窦新存.内滤效应设计对非制式爆炸物高锰酸钾检测性能提升策略研究进展[J].分析测试学报,2022,41(02):290-298. DOI: 10.19969/j.fxcsxb.21051001.
WAN Zhi-xin,CAI Zhen-zhen,DOU Xin-cun.Recent Progress in Sensing Performance Improvement Strategy Designvia Inner Filter Effect for Improvised Explosive Potassium Permanganate Detection[J].Journal of Instrumental Analysis,2022,41(02):290-298. DOI: 10.19969/j.fxcsxb.21051001.
高锰酸钾作为强氧化剂,是重要的非制式爆炸物原料之一,实现对其快速、高灵敏、可视化识别对维护国家公共安全至关重要。近年来,荧光法由于具有选择性好、灵敏度高、响应速度快等优势,通常被用于高锰酸钾检测,其检测原理大多基于内滤效应(IFE)。该文综述了近5年来基于IFE机理检测高锰酸钾的代表性研究成果,总结了IFE机理用于提升高锰酸钾检测性能的设计策略,系统探讨了单发射波长和多发射波长调控,包括配体种类、掺杂元素种类、金属中心个数及种类、不同杂化体系调控对材料光谱性质及高锰酸钾检测性能的影响。展望了该领域基于IFE策略的检测手段可能的发展趋势及应用前景,可为构建高灵敏检测高锰酸钾的IFE体系提供指导。
Potassium permanganate(KMnO,4,),as a powerful oxidant,is widely used in chemical production,water purification and wastewater treatment.While excessive emission can cause severe environmental pollution and excessive intake can lead to irreversible organ necrosis.Moreover,it is one of the most frequently used raw materials in preparing improvised explosives.Hence,a rapid,highly sensitive and visual identification of trace KMnO,4, is of great significance for environment monitoring and public security.Recently,fluorescence technique has been widely applied for KMnO,4, detection due to the features of high sensitivity and selectivity,rapid response,various optional function group and visualization.At present,the fluorescent involved functional materials for detecting KMnO,4, can be divided as nanomaterials,coordination polymers and hybrid materials,the detection mechanism relies on inner filter effect(IFE),fluorescence resonance energy transfer(FRET),static quenching,redox and complexation. Among them,the IFE-based method is the main mechanism employed in KMnO,4, detection due to the advantages of simple operation,sensitive response and material reusability.Hence,this review systematically summarizes the recent progress within five years of the IFE-based approaches for KMnO,4 ,determination.It starts with a brief introduction of strategic designs focusing on performance improvement of IFE-involved sensing detection towards KMnO,4,.The influence from the modulation of the mono-/multi-emission wavelength on the sensing sensitivity is comprehensively discussed.To end,a prospective is forecasted regarding the future development of IFE-involved sensing strategy for KMnO,4, detection and the potential application,providing a guide for the IFE-based sensing platform to ultra-sensitively detect KMnO,4,.
高锰酸钾内滤效应荧光检测非制式爆炸物调控策略
KMnO4inner filter effectfluorescent detectionimprovised explosiveregulation strategy
Wu Z F,Zhou C Y,Zu B Y,Li Y S,Dou X C.Adv. Funct. Mater.,2016,26(25):4578-4586.
Ye Z J,Weng R,Ma Y H,Wang F Y,Liu H,Wei L,Xiao L H.Anal. Chem.,2018,90(21):13044-13050.
Wang G F,Li Y S,Cai Z Z,Dou X C.Adv. Mater.,2020,32(14):1907043.
Liu Y,Li J G,Wang G F,Zu B Y,Dou X C.Anal. Chem.,2020,92(20):13980-13988.
Wang G F,Cai Z Z,Dou X C.Cell Rep. Phys. Sci.,2021,2(2):100317.
Wang P X,Cai Z Z,Li J G,Li Y S,Zu B Y,Dou X C.Adv. Opt. Mater.,2020,8(16): 2000524.
Forbes T P,Sisco E,Staymates M.Anal. Chem.,2018,90(11):6419-6425.
Liang X X,Zhou Q H,Wang W G,Wang X,Chen W D,Chen C,Li Y,Hou K Y,Li J H,Li H Y.Anal. Chem.,2013,85(10):4849-4852.
Zapata F,García-Ruiz C.Anal. Chem.,2016,88(13):6726-6733.
Ma Z W,Li J G,Hu X Y,Cai Z Z,Dou X C.Adv. Sci.,2020,7(24):2002991.
Zhang Y R,Liu Y,Feng X,Zhao B X.Sens. Actuators B,2017,240:18-36.
Su Z,Li Y S,Li J G,Dou X C.Sens. Actuators B,2021,336:129728.
Ke Y L,Zhu X D,Ren W F,Zu B Y,Dou X C.Sci. Sin. Chim. (柯于雷,朱晓丹,任文飞,祖佰祎,窦新存.中国科学:化学),2020,50(1):3-17.
Guo L J,Zu B Y,Yang Z,Cao H Y,Zheng X F,Dou X C.Nanoscale,2014,6(3):1467-1473.
Naik V M,Gunjal D B,Gore A H,Anbhule P V,Sohn D,Bhosale S V,Kolekar G B.Anal. Bioanal. Chem.,2020,412(12):2993-3003.
Suryawanshi S B,Mahajan P G,Bhopate D P,Kolekar G B,Patil S R,Bodake A J.J. Photochem. Photobiol. A,2016,329:255-261.
Ganjali M R,Gupta V K,Hosseini M,Rafiei-Sarmazdeh Z,Faridbod F,Goldooz H,Badiei A R,Norouzi P.Talanta,2012,88:684-688.
Adusumalli V,Lis S,Runowski M,Wozny P.Opt. Mater.,2020,107:110048.
Wang X J,Wang Z H,Huang S,Shi X F,Li J G.Mater. Res. Bull.,2019,117:28-34.
Geng B Y,Yu C,Lin Z,Ling C X.Funct. Mater.,2020,27(4):846-849.
Hu Q,Liu L F,Sun H J,Han J,Gong X J,Liu L Z,Yang Z Q.J. Food Compos. Anal.,2020,88:103447.
Wang Y N,Wang S D,Gao Y M,Yang L L,Xie L X.Z. Anorg. Allg. Chem.,2019,645(24):1358-1364.
Wang K H,Zhu M C,Ma S,Li X,Zhang M,Gao E J.Polyhedron, 2019,166:60-64.
Liu G C,Li Y,Chi J,Xu N,Wang X L,Lin H Y,Chen B K,Li J R.Dalton Trans.,2020,49(3):737-749.
Liu G C,Li Y,Chi J,Xu N,Wang X L,Lin H Y,Chen Y Q.Dyes Pigm.,2020,174:108064.
Ma J,Xu N,Liu Y,Wang Y,Li H,Liu G,Wang X L,Li J R.Inorg. Chem.,2020,59(20):15495-15503.
Liu Y L,Yan L,Liu Y Y,Xu G H,Shi W J,Ma J F.Polyhedron,2019,158:499-505.
Sun Z C,Liu Y Y,Ma J F.Inorg. Chem. Commun.,2020,122:108290.
Huang Y W,Chuang P M,Wu J Y.Inorg. Chem.,2020,59(13):9095-9107.
Zhang J R,Lee J J,Su C H,Tsai M J,Li C Y,Wu J Y.Dalton Trans.,2020,49(40):14201-14215.
Zhao X X,Qin Z B,Li Y H,Cui G H.Trans. Met. Chem.,2018,43(7):597-604.
Gao W,Zhou A M,Wei H,Wang C L,Liu J P,Zhang X M.New J. Chem.,2020,44(17):6747-6759.
Jia W,Ren S M,Xia H C,Zhang C,Zhang J F.Sens. Actuators B,2020,317:128230.
Zhang X D,Zhao Y,Chen K,Jiang Y F,Sun W Y.Chem. Asian J.,2019,14(20):3620-3626.
Ding P,Xin X,Zhao L L,Xie Z C,Zhang Q H,Jiao J M,Xu G Y.RSC Adv.,2017,7(6):3051-3058.
Liu D M,Dong G Y,Wang X,Nie F M,Li X.CrystEngComm,2020,22(45):7877-7887.
Qian J,Sun M M,Liu M,Gu W.ACS Omega,2019,4(7):11949-11959.
Wu Y D,Liu D Y,Lin M H,Qian J.RSC Adv.,2020,10(10):6022-6029.
Ma Z L,Shi J Y,Wang M C,Tian L.Dyes Pigm.,2021,185:108930.
Shi J L,Xu P,Wang X G,Ding B,Zhao X J,Yang E C.Z. Anorg. Allg. Chem.,2018,644(23):1598-1606.
Xu S,Shi J J,Ding B,Liu Z Y,Wang X G,Zhao X J,Yang E C. Dalton Trans.,2019,48(5):1823-1834.
Wang Y N,Wang S D,Wang W J,Hao X X,Qi H.Spectrochim. Acta A,2020,229:117915.
Li B,Yan Q Q,Yong G P.J. Mater. Chem. C,2020,8(34):11786-11795.
Zhu K,Fan R Q,Zheng X B,Wang P,Chen W,Sun T C,Gai S,Zhou X S,Yang Y L.J. Mater. Chem. C,2019,7(47):15057-15065.
Chatterjee S,Qin J C,Li X S,Liang F,Rai D K,Yang Y W.J. Mater. Chem. B,2020,8(11):2238-2249.
Fu X,Lü R,Su J,Li H,Yang B Y,Gu W, Liu X.RSC Adv.,2018,8(9):4766-4772.
Li J F,Wang D X,Li P X,Dong C.Chin. J. Anal. Chem. (李俊芬,王冬秀,李鹏霞,董川.分析化学), 2019,47(5):731-738.
Jiang X H,Qin D M,Mo G C,Feng J S,Zheng X F,Deng B Y.Anal. Chem.,2019,91(17):11455-11460.
Cao Q X,Wang S L,Feng Z L,You C P,Kong L C,Weng X X,Ruan Y M.Sens. Actuators B,2015,208:50-53.
Deng P,Lu L Q,Cao W C,Tian X K.Spectrochim. Acta A,2017,173:578-583.
Chen S,Yu Y L,Wang J H.Anal. Chim. Acta,2018,999:13-26.
Mohammed A,Gugulothu Y,Bandi R,Dadigala R,Utkoor U K.J. Chin. Chem. Soc. (Taipei,Taiwan),2021,68(8):1514-1521.
Liu H Q,Rong J N,Shen G Q,Song Y,Gu W,Liu X.Dalton Trans.,2019,48(13):4168-4175.
Ding B,Liu S X,Cheng Y,Guo C,Wu X X,Guo J H,Liu Y Y,Li Y.Inorg. Chem.,2016,55(9):4391-4402.
Gong X J,Li Z B,Hu Q,Zhou R X,Shuang S M,Dong C.ACS Appl. Mater. Interfaces,2017,9(44):38761-38772.
Cao Y,Zhang Y,Gu L W,Qin X M,Li H Y,Bian H D,Huang F P.New J. Chem.,2020,44(25):10681-10688.
Yan Y T,Cao F,Zhang W Y,Zhang S S,Zhang F,Wang Y Y.New J. Chem.,2018,42(12):9865-9875.
Abdollahi N,Morsali A.Anal. Chim. Acta,2019,64:119-125.
Li F,Hong Y S,Zuo K X,Sun Q,Gao E Q.J. Solid State Chem.,2019,270:509-515.
Du F F,Li G,Gong X J,Guo Z H,Shuang S M,Xian M,Dong C.Sens. Actuators B,2018,277:492-501.
Ma Y Y,Qian D J.Langmuir,2020,36(46):14092-14103.
Zou F R,Wang S N,Wang F F,Liu D,Li Y.Catalysts,2020,10(8):833.
Sun Z,Sun J,Xi L,Xie J,Wang X F,Ma Y,Li L C.Cryst. Growth Des.,2020,20(8):5225-5234.
Sun T C,Hao S,Fan R Q,Zhang J,Chen W,Zhu K,Wang P,Fang X K,Yang Y L.Anal. Chim. Acta,2021,1142:211-220.
Ma J J,Liu W S.Dalton Trans.,2019,48(32):12287-12295.
Dong Z P,Zhao F,Zhang L,Liu Z L,Wang Y Q.New J. Chem.,2020,44(25):10239-10249.
Singha D K,Majee P,Hui S,Mondal S K,Mahata P.Dalton Trans.,2020,49(3):829-840.
Sun P P,Zhang S S,Xiang Z Y,Zhao T,Sun D,Zhang G P,Chen M J,Guo K K,Xin X.J. Colloid Interface Sci.,2019,547:60-68.
Ma Y Y,Qian D J.Langmuir,2020,36(46):14092-14103.
Chatterjee S,Lou X Y,Wang Y,Liang F,Yang Y W.Adv. Sustain. Syst.,2020,5(1):2000220.
Wu L H,Yao S L,Li J,Xu H,Zheng T F,Liu S J,Chen J L,Wen H R.CrystEngComm,2021,23(2):482-491.
Wu J X,Yan B.J. Colloid Interface Sci.,2017,504:197-205.
Komatsu T,Maeki M,Ishida A,Tani H,Tokeshi M.ACS Sens.,2020,5(5):1287-1294.
Liu L B,Li G M,Xiang N,Huang X,Shiba K.Sensors,2020,20(20):5886.
Priye A,Ball C S,Meagher R J.Anal. Chem.,2018, 90(21):12385-12389.
Lo S J,Kuan C M,Hung M W,Fu Y,Yeh J,Yao D J,Cheng C M.Micromachines,2018,9(8):418.
0
Views
5
下载量
2
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution