1.爆炸物安全科学自治区重点实验室,中国科学院特殊环境功能材料与器件重点实验室,中国科学院新疆理化技术研究所,新疆 乌鲁木齐 830011
2.中国科学院大学,材料与光电研究中心,北京 100049
扫 描 看 全 文
曹洄鱼,李毓姝,王广发等.爆炸物原料过氧化氢的比色和荧光可视化检测方法探讨[J].分析测试学报,2021,40(12):1810-1818.
CAO Hui-yu,LI Yu-shu,WANG Guang-fa,et al.Investigation on Colorimetric and Fluorescent Methods for Visual Detection of Hydrogen Peroxide Explosive[J].Journal of Instrumental Analysis,2021,40(12):1810-1818.
曹洄鱼,李毓姝,王广发等.爆炸物原料过氧化氢的比色和荧光可视化检测方法探讨[J].分析测试学报,2021,40(12):1810-1818. DOI: 10.19969/j.fxcsxb.21040201.
CAO Hui-yu,LI Yu-shu,WANG Guang-fa,et al.Investigation on Colorimetric and Fluorescent Methods for Visual Detection of Hydrogen Peroxide Explosive[J].Journal of Instrumental Analysis,2021,40(12):1810-1818. DOI: 10.19969/j.fxcsxb.21040201.
近年来,爆炸恐怖袭击严重威胁人民群众的生命和财产安全。通常,爆炸物分为制式爆炸物和非制式爆炸物两类。其中,过氧化物类爆炸物(PBEs)由于具有原料易得、容易合成且爆炸威力巨大等特点,成为恐怖分子的首选。由于H,2,O,2,不仅是制备PBEs的前驱体,而且还是PBEs的分解产物,目前常通过检测H,2,O,2,实现间接检测PBEs。此外,H,2,O,2,和燃料混合也是威力巨大的爆炸物。因此,爆炸物原料H,2,O,2,的检测对于国家安全和社会稳定具有十分重要的意义。与其它检测方法相比,比色和荧光检测方法因特异性好、灵敏度高、结果可视化、操作简单和便于现场检测等优点而受到广泛关注。该文主要综述了H,2,O,2,的比色和荧光可视化检测方法,并在此基础上,对这两种方法的发展趋势进行了展望,以期为相关领域研究人员提供理论支持和技术参考。
Improvised explosives related to terrorism have seriously threatened the homeland security and social stability as their devices could be easily constructed using readily available,low-cost,and legally purchased ingredients,which make them an ideal alternative option to heavily regulated military explosives.As one of the most popular improvised explosives,peroxide-based explosives(PBEs) are frequently used in terrorist incidents according to the reports of world media.As a result,the detection of PBEs is of great urgency for reducing or potentially stemming explosive-related terrorist attacks.Hydrogen peroxide,as precursor and degradation product,is an inevitable part of PBEs,which is a representative object and usually selected as target analyte when detecting PBEs.Thus,lots of methods have been developed for the detection of hydrogen peroxide,including mass spectrometry,chromatography,electrochemical,and chemiluminescence,etc.Among various types of detection methods,colorimetric and fluorescent detection methods hold considerable promise due to their potential for high sensitivity,excellent specificity,portability,and ease of on-site visual detection.This paper reviewed not only the developing trend of visually detecting hydrogen peroxide in the field of improvised explosive detection,but also how the design strategy can be realized with different detection modes by regulating probe structures and exploring new reaction mechanisms.Nowadays,although excellent sensitivity has been achieved by the ingenuity and artistry inherent to fluorescence turn-on mode via designing diverse fluorescent probes,the anti-interference of visual detection for on-site detection still remains a significant challenge.Recently,a new generation of visual detection method with complementary advantages by combining fluorescent reaction with colorimetric reaction,known as dual-mode detection,has emerged with a fundamentally improvement of anti-interference and opened the door to new development.Due to the necessarily limited scope of this review,we are only able to introduce some of the representative contributions that have general or potential applicability in the field of explosive detection.Notably,to avoid repetition with other reviews discussed specifically in the biological field,this review does not discuss the method based on peroxidase for colorimetric or fluorescent detection of hydrogen peroxide.Diverse methodologies have been summarized for colorimetric or fluorescent detection of hydrogen peroxide,but this review would be rather regarded as an opening remark than draw conclusions since future development of scientific research is filled with uncertainty.It is hoped that this review will not only assist researchers in designing their own experiments,but also provide all the necessary insights for visually detecting peroxide explosives.
爆炸物过氧化氢比色法荧光法可视化检测
explosivehydrogen peroxidecolorimetricfluorescent methodvisual detection
Sun X C,Wang Y,Lei Y.Chem. Soc. Rev.,2015,44(22):8019-8061.
Yang Z,Dou X C.Adv. Funct. Mater.,2016,26(15):2406-2425.
Guo L J,Yang Z,Dou X C.Adv. Mater.,2017,29(5):1604528.
Liu Y,Li J G,Wang G F,Zu B Y,Dou X C.Anal. Chem.,2020,92(20):13980-13988.
Wang P X,Cai Z Z,Li J G,Li Y S,Zu B Y,Dou X C.Adv. Opt. Mater.,2020,8(16):2000524.
Hu X Y,Ma Z W,Li J G,Cai Z Z,Li Y S,Zu B Y,Dou X C.Mater. Horiz.,2020,7(12):3250-3257.
Wang G F,Li Y S,Cai Z Z,Dou X C.Adv. Mater.,2020,32(14):1907043.
Wang G F,Cai Z Z,Dou X C.Cell Rep. Phys. Sci.,2021,2(2):100317.
Ma Z W,Li J G,Hu X Y,Cai Z Z,Dou X C.Adv. Sci.,2020,7(24):2002991.
Su Z,Li Y S,Li J G,Dou X C.Sens. Actuators B,2021,336:129728.
Zhu Q H,Zhang G H,Yuan W L,Wang S L,He L,Yong F,Tao G H.Chem. Commun.,2019,55(91):13661-13664.
Zhang Y,Fu Y Y,Zhu D F,Xu J Q,He Q G,Cheng J G.Chin. Chem. Lett.,2016,27(8):1429-1436.
Xu M,Han J M,Zhang Y Q,Yang X M,Zang L.Chem. Commun.,2013,49(100):11779-11781.
Harms D,Luftmann H,Muller F K,Krebs B,Karst U.Analyst,2002,127(11):1410-1412.
Ivanova A S,Merkuleva A D,Andreev S V,Sakharov K A.Food Chem.,2019,283:431-436.
Baccarin M,Janegitz B C,Berté R,Vicentini F C,Banks C E,Fatibello-Filho O,Zucolotto V.Mater. Sci. Eng.,C,2016,58:97-102.
Wang L,Shi X H,Zhang Y F,Liu A A,Liu S L,Wang Z G,Pang D W.Electrochim. Acta,2020,362:137107.
Wu H T,Wang G F,Dou X C.J. Instrum. Anal. (吴昊天,王广发,窦新存.分析测试学报),2021,40(4):468-477.
Zhang Q,Fu S Y,Li H L,Zhan H Y.Spectrosc. Spectral Anal. (张倩,付时雨,李海龙,詹怀宇.光谱学与光谱分析),2014,34(3):767-770.
Klassen N V,Marchington D,McGowan H C E.Anal. Chem.,1994,66(18):2921-2925.
Lee K M,Kim H.Dyes Pigm.,2019,170:107546.
Graf E,Penniston J T.Clin. Chem.,1980,26(5):658-660.
Wolff S P.Methods Enzymol.,1994,233:182-189.
Xu M,Bunes B R,Zang L.ACS Appl. Mater. Interfaces,2011,3(3):642-647.
Xu W,Fu Y Y,Gao Y X,Yao J J,Fan T C,Zhu D F,He Q G,Cao H M,Cheng J G.Chem. Commun.,2015,51(54):10868-10870.
Chen H Q,Yu H P,Zhou Y Y,Wang L.Spectrochim. Acta A,2007,67(3):683-686.
Liang X,Xu X Y,Qiao D,Yin Z,Shang L Q.Chem. Asian J.,2017,12(24):3187-3194.
Wu G F,Zeng F,Yu C M,Wu S Z,Li W S.J. Mater. Chem. B,2014,2(48):8528-8537.
Zhao W J,Li Y H,Yang S,Chen Y,Zheng J,Liu C H,Qing Z H,Li J S,Yang R H.Anal. Chem.,2016,88(9):4833-4840.
Li N,Huang J X,Wang Q Q,Gu Y Q,Wang P.Sens. Actuators B,2018,254:411-416.
Liu X J,Tian H H,Yang L,Su Y A,Guo M,Song X Z.Sens. Actuators B,2018,255:1160-1165.
Xu K H,Tang B,Huang H,Yang G W,Chen Z Z,Li P,An L G.Chem. Commun.,2005,(48):5974-5976.
Rhee S G,Chang T S,Jeong W,Kang D.Mol. Cells,2010,29(6):539-549.
Zamojc K,Zdrowowicz M,Jacewicz D,Wyrzykowski D,Chmurzynski L.Crit. Rev. Anal. Chem.,2016,46(3):171-200.
Rezende F,Brandes R P,Schroder K.Antioxid. Redox Sign.,2018,29(6):585-602.
Putt K S,Pugh R B.PLoS ONE,2013,8(11):e79218.
Elbasuney S.TrAC,Trends Anal. Chem.,2018,102:272-279.
Katafias A,Lipińska M,Strutyński K.React. Kinet. Mech. Catal.,2010,101(2):251-266.
Savage D J.Analyst,1951,76(901):224-226.
Gay C,Gebicki J M.Anal. Biochem.,2000,284(2):217-220.
Lima M J A,Sasaki M K,Marinho O R,Freitas T A,Faria R C,Reis B F,Rocha F R P.Microchem. J.,2020,157:105042.
Piccini A.Z. Anorg. Allg. Chem.,1895,10(1):438-445.
Eisenberg G.Ind. Eng. Chem. Anal. Ed.,1943,15(5):327-328.
Rotzinger F P,Graetzel M.Inorg. Chem.,1987,26(22):3704-3708.
Kastvig M H,Hirschberg C,Van Den Berg F W J,Rantanen J,Andersen M L.Powder Technol.,2020,366:348-357.
Matsubara C,Iwamoto T,Nishikawa Y,Takamura K,Yano S,Yoshikawa S.J. Chem. Soc.,Dalton Trans.,1985,(1):81-84.
Takamura K,Matsumoto T.Dalton Trans.,2020,49(3):690-696.
Matsubara C,Kudo K,Kawashita T,Takamura K.Anal. Chem.,1985,57(6):1107-1109.
Ke Y L,Zhu X D,Ren W F,Zu B Y,Dou X C.Sci. Sin. Chim. (柯于雷,朱晓丹,任文飞,祖佰祎,窦新存.中国科学:化学),2019,50(1):3-17.
Yu F B,Li P,Song P,Wang B S,Zhao J Z,Han K L.Chem. Commun.,2012,48(41):4980-4982.
Lampard E V,Sedgwick A C,Sun X,Filer K L,Hewins S C,Kim G,Yoon J,Bull S D,James T D.Chemistryopen,2018,7(3):262-265.
Bigdeli A,Ghasemi F,Abbasi-Moayed S,Shahrajabian M,Fahimi-Kashani N,Jafarinejad S,Farahmand Nejad M A,Hormozi-Nezhad M R.Anal. Chim. Acta,2019,1079:30-58.
Yuan L,Lin W Y,Zheng K B,Zhu S S.Acc. Chem. Res.,2013,46(7):1462-1473.
Srikun D,Miller E W,Dornaille D W,Chang C J.J. Am. Chem. Soc.,2008,130(14):4596-4597.
Albers A E,Okreglak V S,Chang C J.J. Am. Chem. Soc.,2006,128(30):9640-9641.
Castro R C,Soares J X,Ribeiro D S M,Santos J L M.Sens. Actuators B,2019,296:126665.
Du F K,Min Y H,Zeng F,Yu C M,Wu S Z.Small,2014,10(5):964-972.
Zheng D J,Yang Y S,Zhu H L.TrAC,Trends Anal. Chem.,2019,118:625-651.
Lo L C,Chu C Y.Chem. Commun.,2003,(21):2728-2729.
Chang M C Y,Pralle A,Isacoff E Y,Chang C J.J. Am. Chem. Soc.,2004,126(47):15392-15393.
Xu J,Li Q,Yue Y,Guo Y,Shao S J.Biosens. Bioelectron.,2014,56:58-63.
Sawaki Y,Foote C S.J. Am. Chem. Soc.,1979,101(21):6292-6296.
Siegel B,Lanphear J.J. Org. Chem.,1979,44(6):942-946.
He Y Q,Miao L X,Yu L,Chen Q L,Qiao Y M,Zhang J F,Zhou Y.Dyes Pigm.,2019,168:160-165.
Leichnitz S,Heinrich J,Kulak N.Chem. Commun.,2018,54(95):13411-13414.
0
Views
4
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution