ZHANG Chun-xiang,TANG Si-ping,LI Wen-qian,et al.Construction of a New Fluorescent Probe Based on 1,4-Nucleophilic Addition Reaction for Sulfite and Its Application in Food and Living Cells[J].Journal of Instrumental Analysis,2021,40(09):1286-1292.
ZHANG Chun-xiang,TANG Si-ping,LI Wen-qian,et al.Construction of a New Fluorescent Probe Based on 1,4-Nucleophilic Addition Reaction for Sulfite and Its Application in Food and Living Cells[J].Journal of Instrumental Analysis,2021,40(09):1286-1292. DOI: 10.19969/j.fxcsxb.20123002.
Construction of a New Fluorescent Probe Based on 1,4-Nucleophilic Addition Reaction for Sulfite and Its Application in Food and Living Cells
In this study, a simple but effective fluorescent probe(,CQ,) was constructed for the detection of sulfite. The N-methylquinoline trifluoromethanesulfonate fragment as the sulfite response site was linked to the 4-cyanobenzoacetonitrile fragment using a C,,http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=37282962&type=,http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=37282960&type=,3.55599999,3.55599999,C bond. Upon treatment with sulfite, the probe ,CQ, showed an obvious fluorescence enhancement. Meanwhile, the color of the ,CQ, solution changed from colorless to yellow, which could be directly observed with naked eye. The reaction mechanism of probe ,CQ, towards sulfite was studied in detail by ,1,H NMR spectra. Notably, the fluorescence response of the probe to sulfite was very fast(20 s), which was suitable for the real-time detection of sulfite. In PBS buffer solution(DMF∶H,2,O=1∶9, volume ratio, pH 7.4), there existed a good linear relationship between the fluorescence intensity at 511 nm and concentration of sulfite in the range of 0-10 μmol/L, with a detection limit of 25 nmol/L. The selectivity experiments indicated that probe ,CQ, has a high selectivity for sulfite, which could satisfy the requirements for practical application. More importantly, the probe could not only be applied to the detection of sulfite in real food samples, but also realize the imaging of sulfite living cells, which provides a powerful analytical method for the monitoring of sulfite in food and biological systems.
关键词
亚硫酸盐荧光探针食品细胞成像
Keywords
sulfitefluorescent probefoodcell imaging
references
Koch M, Köppen R, Siegel D, Witt A, Nehls I. J. Agric. Food Chem., 2010, 58(17): 9463-9467.
Fazio T, Warner C R. Food Addit. Contam., 1990, 7(4): 433-454.
Vally H, Misso N L, Madan V. Clin. Exp. Allergy, 2009, 39(11): 1643-1651.
Bai J Y. J. Occup. Environ. Med.(白剑英. 环境与职业医学), 2007, 4: 431-434
Ruiz-Capillas C, Jiménez-Colmenero F. Food Chem., 2009, 112(2): 487-493.
Martins A B, Lobato A, Tasić N, Perez-Sanz F J, Vidinha P, Paixão T R, Gonçalves L M. Electrochem. Commun., 2019, 107: 106541.
Trenerry V C. Food Chem., 1996, 55(3): 299-303.
Pizzoferrato L, Di Lullo G, Quattrucci E. Food Chem., 1998, 63(2): 275-279.
Poms R E, Klein C L, Anklam E. Food Addit. Contam., 2004, 21(1): 1-31.
Zhang Q, Zhang Y, Ding S S, Zhang H Y, Feng G Q. Sens. Actuators B, 2015, 211: 377-384.
Cao D X, Liu Z Q, Verwilst P, Koo S, Jangjili P, Kim J S, Lin W Y. Chem. Rev., 2019, 119(18): 10403-10519.
Zheng X L, Li H, Feng W, Xia H C, Song Q H. ACS Omega, 2018, 3(9): 11831-11837.
Jiang Q, Wang Z L, Li M X, Song J, Yang Y Q, Xu X, Xu H J, Wang S F. Dyes Pigm., 2019, 171: 107702.
Song G L, Liu A K, Jiang H L, Ji R X, Dong J, Ge Y Q. Anal. Chim. Acta, 2019, 1053: 148-154.
Zhang H Y, Xue S H, Feng G Q. Sens. Actuators B, 2016, 231: 752-758.
Yang B, Xu J, Zhu H L. Free Radic. Biol. Med., 2020, 146: 405.
Choi M G, Hwang J, Eor S, Chang S K. Org. Lett., 2010, 12(24): 5624-5627.
Li J, Gao Y, Guo H R, Li X K, Tang H Y, Li J, Guo Y. Dyes Pigm., 2019, 163: 285-290.
Wang K N, Zhu Y L, Xing M M, Cao D X, Guan R F, Zhao S F, Liu Z Q, Mao Z W. Sens. Actuators B, 2019, 295: 215-222.
Xie C Y, Du K, Xie M, Lv F, Li X H, Tang D G. Inorg. Chem. Commun., 2018, 94: 10-14.
Choi M G, Hwang J, Moon J O, Sung J, Chang S K. Org. Lett., 2011, 13(19): 5260-5263.
Dai X, Zhang T, Du Z F, Cao X J, Chen M Y, Hu S W, Miao J Y, Zhao B X. Anal. Chim. Acta, 2015, 888: 138-145.
Gu B, Huang L Y, Xu Z F, Tan Z, Hu M, Yang Z T, Chen Y X, Peng C, Xiao W P, Yu D H, Li H T. Sens. Actuators B, 2018, 273: 118-125.
Yue Y K, Huo F J, Ning P, Zhang Y B, Chao J B, Meng X M, Yin C X. J. Am. Chem. Soc., 2017, 139: 3181-3185.
Huang M F, Chen L N, Ning J Y, Wu W L, He X D, Miao J Y, Zhao B X. Sens. Actuators B, 2018, 261: 196-202.
Xu J, Zheng D J, Su M M, Chen Y C, Jiao Q C, Yang Y S, Zhu H L. Org. Biomol. Chem., 2018, 16: 8318-8324.
Choi M G, Hwang J, Eor S, Chang S K. Org. Lett., 2010, 12: 5624-5627.
Guo X, Xia L L, Huang J X, Wan Y M, Gu Y Q, Wang P. RSC Adv., 2018, 8: 21047-21053.
Xie P H, Gao G Q, Zhang W J, Yang G Y, Jin Q. J. Chem. Sci., 2015, 127: 1267-1273.