MEI Ji-fan,LI Zhi-hui,LI Jia-kang,et al.Components Discrimination for Formula Tobacco Based on Hyperspectral Imaging[J].Journal of Instrumental Analysis,2021,40(08):1151-1157.
MEI Ji-fan,LI Zhi-hui,LI Jia-kang,et al.Components Discrimination for Formula Tobacco Based on Hyperspectral Imaging[J].Journal of Instrumental Analysis,2021,40(08):1151-1157. DOI: 10.19969/j.fxcsxb.20110702.
Components Discrimination for Formula Tobacco Based on Hyperspectral Imaging
Near-infrared(1 000-2 200 nm) hyperspectral imaging technique was applied to the discrimination of components in formula tobacco, including cut lamina, cut stem, expanded tobacco and reconstituted tobacco. Two approaches, named pixel-wise and object-wise, were investigated to conduct this research. The pixel-wise components discrimination study was based on the spectral data of all pixels of the hyperspectral images of samples. Second derivative coupled with Savitzky-Golay(SG) algorithm was applied as preprocessing method for original spectral data. Through principal component analysis of the pixel data, the feasibility for component discrimination of the pixel hyperspectral data was confirmed. The established support vector machine(SVM) model based on first five components' data showed its excellent character in discriminating cut lamina and cut stem, cut lamina and reconstituted tobacco, obtaining intuitive discrimination results. The K-nearest neighbor and support vector machine discriminant model for the four components of samples was established. The characteristic wavelength was selected by the continuous projection algorithm and the second derivative method, and the band with high discrimination accuracy was selected, with a component discrimination rate reached 86.97%.
Ding M Z, Liu H, Liu Q, Li Q S, Li L F, Zhao L, Wang H B, Wang H B. Food Mach.(丁美宙, 刘欢, 刘强, 李全胜, 李龙飞, 赵乐, 王海滨, 王洪波. 食品与机械), 2017, 33(9): 197-202.
Chen S W, Hu S L, Cui N, Wang F Y, Liu Q, Yu H Y, Zhang C S. Southwest China J. Agric. Sci.(陈帅伟, 胡苏林, 崔宁, 王法懿, 刘群, 于海洋, 张超帅. 西南农业学报), 2015, 28(6): 2742-2745.
Xu C L, Song C P, Dai Y, Ma K Y, Wang W C, Shi P P, Wang M, She S K. J. Hunan Agric. Univ.: Nat. Sci.(徐成龙, 宋朝鹏, 戴亚, 马扩彦, 王文超, 石盼盼, 王梅, 佘世科. 湖南农业大学学报:自然科学版), 2013, 39(1): 23-25.
Yu J J. Cigarette Technology. 2nd ed. Beijing: China Agriculture Press(于建军. 卷烟工艺学. 2版. 北京: 中国农业出版社), 2009: 20-30.
Hu L Z, Zhang S J, Yu X P, Zhang L H. Acta Tabacaria Sinica(胡立中, 张胜军, 余小平, 张灵辉. 中国烟草学报), 2010, 16(2): 26-30.
Lin H, Zhang X Y, Cao F J, Zhou J. China Patent(林慧, 张馨予, 曹伏军, 周骏. 中国专利), CN110779832A. 2020-02-11.
Zhengzhou Tobacco Research Institute of CNTC. China Patent(中国烟草总公司郑州烟草研究院. 中国专利), CN107271312B. 2019-06-21.
Dai Q, Sun D W, Xiong Z J, Cheng J H, Zeng X A. Compr. Rev. Food Sci. Food Saf., 2014, 13(5): 891-905.
Zhao D E, Wu R, Zhao B G, Chen Y Y. Spectrosc. Spectral Anal.(赵冬娥, 吴瑞, 赵宝国, 陈媛媛.光谱学与光谱分析), 2019, 39(3):921-926.
Feng C L, Zhu Q B, Zhu X, Huang M. J. Sci. Jiangnan Univ.: Nat. Sci. Ed.(冯朝丽, 朱启兵, 朱晓, 黄敏. 江南大学学报:自然科学版), 2012, 11(2): 149-153.
Li J B, Rao X Q, Ying Y B, Wang D T. Trans. Chin. Soc. Agric. Eng.(李江波, 饶秀勤, 应义斌, 王东亭. 农业工程学报), 2010, 26(8): 222-228.
Barbin D, Elmasry G, Sun D W, Allen P. Meat Sci., 2012, 90(1): 259-268.
Zhong S X, Li Z B, Tang R N. Nat. Sci. J. Hainan Univ.(钟穗希, 李子波, 唐荣年. 海南大学学报: 自然科学版), 2020, 38(3): 260-269.
Cheng S X, Xie C Q, Wang Q N, He Y, Shao Y N. Spectrosc. Spectral Anal.(程术希, 谢传奇, 王巧男, 何勇, 邵咏妮. 光谱学与光谱分析), 2014, 34(5): 1362-1366.
Cheng Z, Zhang L Q, Liu H Y, Zhu A S. Spectrosc. Spectral Anal.(成忠, 张立庆, 刘赫扬, 诸爱士. 光谱学与光谱分析), 2010, 30(4):949-952.
Fang X R, Gao J F, Xie C Q, Zhu F L, Huang L X, He Y. Spectrosc. Spectral Anal.(方孝荣, 高俊峰, 谢传奇, 朱逢乐, 黄凌霞, 何勇. 光谱学与光谱分析), 2015, 35(7):1949-1955.
Xia J, Yang Y W, Cao H X. Comput. Electron. Agric., 2018, 145: 27-34.
Yin W X, Zhang C, Zhu H Y, Zhao Y R, He Y. Plos One, 2017, 12(7): 891-905.
Cao X L, Deng M J, Cui G X. Spectrosc. Spectral Anal.(曹晓兰, 邓梦洁, 崔国贤. 光谱学与光谱分析), 2019, 39(6):1905-1908.
Rapid Screening of Polycyclic Aromatic Hydrocarbons in Food Contact Materials by Surface-enhanced Raman Spectroscopy Combined with Principal Component Analysis
A Non-destructive Identification Method for Different Varieties and Adulterate Notoginseng Based on Near-infrared Spectroscopic Technique
Identification on Different Origins of Citri Reticulatae Pericarpium Using Near Infrared Spectroscopy Combined with Optimized Spectral Pretreatments
Identification on Different Origins of Citri Reticulatae Pericarpium Using Near Infrared Spectroscopy Combined with Optimized Spectral Pretreatments
Detection of Mineral Oils in Recycled and Virgin Papers by LC-GC-MS and Their Discrimination
Related Author
No data
Related Institution
School of Chemistry,Sun Yat-sen University
College of Food Science and Technology, Hunan Provincial Key Laboratory of Food Science and Biotechnology, Hunan Agricultural University
Hunan Agricultural Product Processing Institute,Hunan Academy of Agricultural Sciences