ZHANG Yi-yan,MA Jing,SUN Zhen-li,DU Jing-jing.Efficient Identification of Microplastics Based on Interpretable Deep Learning-Surface-enhanced Raman Scattering[J].Journal of Instrumental Analysis,2025,44(08):1557-1567.
ZHANG Yi-yan,MA Jing,SUN Zhen-li,DU Jing-jing.Efficient Identification of Microplastics Based on Interpretable Deep Learning-Surface-enhanced Raman Scattering[J].Journal of Instrumental Analysis,2025,44(08):1557-1567. DOI: 10.12452/j.fxcsxb.250331247.
Efficient Identification of Microplastics Based on Interpretable Deep Learning-Surface-enhanced Raman Scattering
Microplastic(MPs) pollution has become a major challenge to the global environment. Traditional methods have many limitations in detection of microplastics,highlighting the urgent need for highly sensitive detection technology without complex preprocessing. In this study,a novel framework with surface-enhanced Raman scattering substrate capture,deep learning recognition,and gradient-weighted class activation mapping(Grad-CAM) interpretation was constructed to solve the problem of MPs detection. The results show that the Au nanosponge substrate can effectively capture MPs. The data enhancement and preprocessing techniques can effectively improve the prediction accuracy of the model. In addition,the classification accuracy of the one-dimensional convolutional neural network(1D-CNN)-based multi-branch binary classification network can be up to 85%,which is significantly higher than that of the machine learning model and conventional 1D-CNN model. The Grad-CAM analysis effectively elucidates the model's decision-making rationale and provides insights into the causes of misclassification. This method was effectively validated using real-world mixed microplastic samples. The substrates employed in this study are characterized by their widespread material availability,straightforward fabrication process,cost-effectiveness,and significant potential for practical applications.
关键词
Keywords
references
Jambeck J R , Geyer R , Wilcox C , Siegler T R , Perryman M , Andrady A , Narayan R , Law K L . Science , 2015 , 347 ( 6223 ): 768 - 771 .
Nguyen B , Claveau-Mallet D , Hernandez L M , Xu E G , Farner J M , Tufenkji N . Acc. Chem. Res. , 2019 , 52 ( 4 ): 858 - 866 .
Weng Y , Yan H , Nan X , Sun H , Shi Y , Zhang Y , Zhang N , Zhao X , Liu B . J. Hazard. Mater. , 2024 , 470 : 134219 .
Wang Z M , Wagner J , Ghosal S , Bedi G , Wall S . Sci. Total Environ. , 2017 , 603 : 616 - 626 .
Peters C A , Hendrickson E , Minor E C , Schreiner K , Halbur J , Bratton S P . Mar. Pollut. Bull. , 2018 , 137 : 91 - 95 .
Fan C , Huang Y Z , Lin J N , Li J . Environ. Technol. Innovation , 2021 , 23 : 101798 .
Langer J , Jimenez de Aberasturi D , Aizpurua J , Alvarez-Puebla R A , Auguié B , Baumberg J J , Bazan G C , Bell S E J , Boisen A , Brolo A G , Choo J , Cialla-May D , Deckert V , Fabris L , Faulds K , García de Abajo F J , Goodacre R , Graham D , Haes A J , Haynes C L , Huck C , Itoh T , Käll M , Kneipp J , Kotov N A , Kuang H , Le Ru E C , Lee H K , Li J F , Ling X Y , Maier S A , Mayerhöfer T , Moskovits M , Murakoshi K , Nam J M , Nie S , Ozaki Y , Pastoriza-Santos I , Perez-Juste J , Popp J , Pucci A , Reich S , Ren B , Schatz G C , Shegai T , Schlücker S , Tay L L , Thomas K G , Tian Z Q , Van Duyne R P , Vo-Dinh T , Wang Y , Willets K A , Xu C , Xu H , Xu Y , Yamamoto Y S , Zhao B , Liz-Márzan L M . ACS Nano , 2020 , 14 ( 1 ): 28 - 117 .
Lin X M , Cui Y , Xu Y H , Ren B , Tian Z Q . Anal. Bioanal. Chem. , 2009 , 394 ( 7 ): 1729 - 1745 .
Yin R , Ge H , Chen H , Du J , Sun Z , Tan H , Wang S . Environ. Adv. , 2021 , 5 : 100096 .
Guo P , Wang Y , Moghaddamfard P , Meng W , Wu S , Bao Y . J. Hazard. Mater. , 2024 , 471 : 134405 .
Daidone M , Ferrantelli S , Tuttolomondo A . Neural Regener. Res. , 2024 , 19 ( 4 ): 769 - 773 .
Zhou Z , Tian D , Yang Y , Cui H , Li Y , Ren S , Han T , Gao Z . Curr. Res. Food Sci. , 2024 , 8 : 100679 .
Liu S S , Zhang B , Li X Y , Xin L , Ying G G , Chen C E . J. Instrum. Anal. (刘思思,张波,李星颖,辛蕾,应光国,陈长二. 分析测试学报), 2024 , 43 ( 8 ): 1105 - 1116 .
Resmi A N , Nazeer S S , Dhushyandhun M E , Paul W , Chacko B P , Menon R N , Jayasree R S . ACS Chem. Neurosci. , 2024 , 15 ( 24 ): 4390 - 4401 .
Leong Y X , Lee Y H , Koh C S L , Phan-Quang G C , Han X , Phang I Y , Ling X Y . Nano Lett. , 2021 , 21 ( 6 ): 2642 - 2649 .
Bajomo M M , Ju Y , Zhou J , Elefterescu S , Farr C , Zhao Y , Neumann O , Nordlander P , Patel A , Halas N J . Proc. Natl. Acad. Sci. USA , 2022 , 119 ( 52 ): e2211406119 .
Fang G , Hasi W , Sha X , Cao G , Han S , Wu J , Lin X , Bao Z . J. Phys. Chem. Lett. , 2023 , 14 ( 32 ): 7290 - 7298 .
Lussier F , Thibault V , Charron B , Wallace G Q , Masson J F . TrAC-Trends Anal. Chem. , 2020 , 124 : 115796 .
Hassija V , Chamola V , Mahapatra A , Singal A , Goel D , Huang K , Scardapane S , Spinelli I , Mahmud M , Hussain A . Cognit. Comput. , 2024 , 16 ( 1 ): 45 - 74 .
Rasheed K , Qayyum A , Ghaly M , Al-Fuqaha A , Razi A , Qadir J . Comput. Biol. Med. , 2022 , 149 : 106043 .
Selvaraju R R , Cogswell M , Das A , Vedantam R , Parikh D , Batra D . Int. J. Comput. Vision , 2020 , 128 ( 2 ): 336 - 359 .
Xu J , Du J , Jing C , Zhang Y , Cui J . ACS Appl. Mater. Interfaces , 2014 , 6 ( 9 ): 6891 - 6897 .
Asemani M , Rabbani A R . J. Pet. Sci. Eng. , 2020 , 185 : 106618 .
Dong S , Wang P , Abbas K . Comput. Sci. Rev. , 2021 , 40 : 100379 .
Wang G , Peng L , Yu B , Chen S , Ge Z , Uyama H . J. Ind. Eng. Chem. , 2018 , 62 : 192 - 196 .
Amendola V , Pilot R , Frasconi M , Marago O M , Iati M A . J. Phys.Condens. Matter , 2017 , 29 ( 20 ): 203002 .
Feng Z , Zheng L , Liu J . Chemosphere , 2023 , 325 : 138312 .
Jin N , Song Y , Ma R , Li J , Li G , Zhang D . Anal. Chim. Acta , 2022 , 1197 : 339519 .
Marica I , Pinzaru S C . J. Raman Spectrosc. , 2023 , 54 ( 3 ): 305 - 313 .
Xie L , Luo S , Liu Y , Ruan X , Gong K , Ge Q , Li K , Valev V K , Liu G , Zhang L . Environ. Sci. Technol. , 2023 , 57 ( 46 ): 18203 - 18214 .
Hanley J A , McNeil B J . Radiology , 1982 , 143 ( 1 ): 29 - 36 .