浏览全部资源
扫码关注微信
1.天津大学 环境科学与工程学院,天津 300354
2.海南大学 生态学院,海南 海口 571924
3.西藏大学 生态环境学院,西藏 拉萨 850000
Received:11 December 2024,
Revised:25 January 2025,
Accepted:26 January 2025,
Published:15 June 2025
移动端阅览
彭浩然,万希哲,郭乐霞,姜天琪,李梁,员东丹,童银栋,崔晓宇.化学计量学在水体微塑料识别中的应用[J].分析测试学报,2025,44(06):1219-1226.
PENG Hao-ran,WAN Xi-zhe,GUO Yue-xia,JIANG Tian-qi,LI Liang,YUAN Dong-dan,TONG Yin-dong,CUI Xiao-yu.Chemometrics in the Identification of Microplastics in Aquatic Ecosystems[J].Journal of Instrumental Analysis,2025,44(06):1219-1226.
彭浩然,万希哲,郭乐霞,姜天琪,李梁,员东丹,童银栋,崔晓宇.化学计量学在水体微塑料识别中的应用[J].分析测试学报,2025,44(06):1219-1226. DOI: 10.12452/j.fxcsxb.24121109.
PENG Hao-ran,WAN Xi-zhe,GUO Yue-xia,JIANG Tian-qi,LI Liang,YUAN Dong-dan,TONG Yin-dong,CUI Xiao-yu.Chemometrics in the Identification of Microplastics in Aquatic Ecosystems[J].Journal of Instrumental Analysis,2025,44(06):1219-1226. DOI: 10.12452/j.fxcsxb.24121109.
塑料污染是人类当今面临的重大环境挑战,大量塑料废弃物可通过各种途径进入水体环境,老化裂解成尺寸小于5 mm的微塑料(MPs)。MPs广泛分布于水体中,对生态系统和人类健康构成潜在威胁,因此,开发有效的分析方法识别和检测MPs至关重要。现有的MPs识别方法主要包括目视法、光谱法和化学成像法,三者虽各有优势,但普遍存在耗时长、成本高、主观性强等局限性,限制了技术发展。新兴的化学计量学技术可以高效处理和自动化分析海量数据,为MPs的识别提供了新的工具。研究表明,传统MPs识别方法结合化学计量学技术可以使识别准确率从60%提升至98%,并实现自动化数据分析,极大提高了效率和准确性。此外,原位检测技术的发展有助于降低采样成本,使得频繁且长期的MPs监测成为可能。该文综述了现有的水体MPs识别方法及其局限性,介绍了化学计量学的工作流程,并讨论了其在MPs识别中的应用现状和最新进展,强调了其在数据处理、技术优化以及定性定量分析中的关键作用。最后,指出了化学计量学技术当前存在的局限,并为其未来发展提出了建议与展望。
Plastic pollution stands as a significant environmental challenge of our time,with vast amounts of plastic waste entering aquatic environments through various pathways and degrading into microplastics(MPs) measuring less than 5 mm. These MPs are widely distributed in water bodies,posing a potential threat to ecosystems and human health. Thus,it is imperative to develop effective analytical methods for the identification and detection of MPs. Current MP identification techniques,including visual,spectroscopic,and chemical imaging methods,offer distinct advantages but are generally time-consuming,costly,and subject to human bias,thereby hindering technological advancement. The emerging chemometrics technology provides a powerful tool for processing and automating the analysis of large datasets,revolutionizing MP identification. Research has shown that combining traditional MPs recognition methods with chemometric techniques can increase recognition accuracy from 60% to 98%,and achieve automated data analysis,greatly improving efficiency and accuracy. In addition,the development of in-situ detection technology can help to reduce sampling costs and realize frequent and long-term monitoring of MPs. This review summarizes the existing methods for identifying MPs in aquatic environments along with their limitations,introduces the workflow of chemometrics,and discusses its current applications and latest developments in MP identification. It highlights the crucial role of chemometrics in data processing,technical optimization,and qualitative and quantitative analysis. Finally,the paper addresses some of the current limitations of chemometric technology and offers recommendations and perspectives for its further development and application.
Courtene-Jones W , Van Gennip S , Penicaud J , Penn E , Thompson R C . Mar. Pollut. Bull . , 2022 , 185 : 114371 .
Europe Plastics . Plastics the Fast Facts 2024 . [ 2024-12-08 ]. https://plasticseurope.org/knowledge-hub/plastics-the-fast-facts-2024/ https://plasticseurope.org/knowledge-hub/plastics-the-fast-facts-2024/ .
Wright S L , Thompson R C , Galloway T S . Environ. Pollut. , 2013 , 178 : 483 - 492 .
Hidalgo-Ruz V , Gutow L , Thompson R C , Thiel M . Environ. Sci. Technol. , 2012 , 46 ( 6 ): 3060 - 3075 .
Su X X , Yang L Y , Yang K , Tang Y J , Wen T , Wang Y M , Rillig M C , Rohe L , Pan J L , Li H , Zhu Y G . Nat. Commun. , 2022 , 13 : 3884 .
Holda M K , Batko J . Eng. J. Med. , 2024 , 390 ( 18 ): 1726 - 1728 .
Song Y K , Hong S H , Jang M , Han G M , Rani M , Lee J , Shim W J . Mar. Pollut. Bull. , 2015 , 93 ( 1/2 ): 202 - 209 .
Veerasingam S , Ranjani M , Venkatachalapathy R , Bagaev A , Mukhanov V , Litvinyuk D , Mugilarasan M , Gurumoorthi K , Guganathan L , Aboobacker V M , Vethamony P . Crit. Rev. Environ. Sci. Technol. , 2021 , 51 ( 22 ): 2681 - 2743 .
Cui X Y , Sun Y , Cai W S , Shao X G . Sci. China B , 2019 , 62 ( 5 ): 583 - 591 .
Cui X Y , Tang M J , Wang M J , Zhu T . Anal. Chim. Acta , 2021 , 1186 : 339089 .
Ai W J , Liu S L , Liao H P , Du J Q , Cai Y L , Liao C L , Shi H W , Lin Y D , Junaid M H W , Yue X J , Wang J . Sci. Total Environ. , 2022 , 807 : 151030 .
Zhang W T , Huang W G , Tan J , Huang D W , Ma J , Wu B D . Chemosphere , 2023 , 311 : 137044 .
Taoufik N , Boumya W , Achak M , Chennouk H , Dewil R , Barka N . Sci. Total Environ. , 2022 , 807 : 150554 .
Hufnagl B , Stibi M , Martirosyan H , Wilczek U , Moeller J N , Loeder M G J , Laforsch C , Lohninger H . Environ. Sci. Technol. Lett. , 2022 , 9 ( 1 ): 90 - 95 .
Andrady A L . Mar. Pollut. Bull. , 2011 , 62 ( 8 ): 1596 - 1605 .
Magni S , Nigro L , Torre C D , Binelli A . J. Hazard. Mater. , 2021 , 412 : 125204 .
Erni-Cassola G , Zadjelovic V , Gibson M I , Christie-Oleza J A . J. Hazard. Mater. , 2019 , 369 : 691 - 698 .
Habib D , Locke D C , Cannone L J . Water,Air,Soil Pollut. , 1998 , 103 ( 1/4 ): 1 - 8 .
Yuan W K , Liu X N , Wang W F , Di M X , Wang J . Ecotoxicol. Environ. Saf. , 2019 , 170 : 180 - 187 .
Moore C J , Moore S L , Leecaster M K , Weisberg S B . Mar. Pollut. Bull. , 2001 , 42 ( 12 ): 1297 - 1300 .
Environment Programme UN . UNEP Year Book 2014 : Emerging Issues in Our Global Environment ,2014. https://www.unep.org/resources/report/unep-year-book-2014-emerging-issues-our-global-environment https://www.unep.org/resources/report/unep-year-book-2014-emerging-issues-our-global-environment .
Tang Q F , Li Q M , Wei X X , Shao P , Gao L J , Chen Q R , Hu G H , Liu W L , Gao X . J. Instrum. Anal. (汤庆峰,李琴梅,魏晓晓,邵鹏,高丽娟,陈啟荣,胡光辉,刘伟丽,高峡. 分析测试学报), 2019 , 38 ( 8 ): 1009 - 1019 .
Wang X Q , Niu Q Y , Li P H , Li Z , Wang Q , Guo L , Wan J F , Guo X Y . Appl. Chem. Ind . (王晓庆,牛清雨,李鹏浩,李哲,王琼,郭林,万俊锋,郭笑盈. 应用化工), 2023 , 52 ( 2 ): 551 - 556 .
Goldstein M C , Titmus A J , Ford M . PLoS One , 2013 , 8 ( 11 ): e80020 .
Liu Z M , Wang W J , Liu X L . TrAC,Trends Anal. Chem. , 2023 , 160 : 116956 .
Su Y , Yu Y , Zhang N . Sci. Total Environ. , 2020 , 733 : 138984 .
Waring R H , Harris R M , Mitchell S C . Maturitas , 2018 , 115 : 64 - 68 .
He Y , Bai X L , Xiao Q L , Liu F , Zhou L , Zhang C . Crit. Rev. Food Sci. Nutr. , 2021 , 61 ( 14 ): 2351 - 2371 .
Oliveri P , Malegori C , Simonetti R , Casale M . Anal. Chim. Acta , 2019 , 1058 : 9 - 17 .
Ellis D I , Brewster V L , Dunn W B , Allwood J W , Golovanov A P , Goodacre R . Chem. Soc. Rev. , 2012 , 41 ( 17 ): 5706 - 5727 .
Rodionova O Y , Titova A V , Pomerantsev A L . TrAC,Trends Anal. Chem. , 2016 , 78 : 17 - 22 .
Yurtsever M , Yurtsever U . Chemosphere , 2019 , 216 : 271 - 280 .
Bertoldi C , Lara L Z , Gomes A A , Fernandes A N . Microchem. J. , 2021 , 160 : 105690 .
Bai R H , Fan R Q , Liu Q , Liu Q , Yan C R , Cui J X , He W Q . Environ. Sci. (白润昊,范瑞琪,刘琪,刘勤,严昌荣,崔吉晓,何文清. 环境科学), 2024 , 45 ( 2 ): 1185 - 1195 .
Kedzierski M , Falcou-Prefol M , Kerros M E , Henry M , Pedrotti M L , Bruzaud S . Chemosphere , 2019 , 234 : 242 - 251 .
Tian X , Been F , Bauerlein P S . Environ. Res. , 2022 , 212 : 113569 .
Yang S J , Feng W W , Cai Z Q , Wang Q . Spectrosc. Spectral Anal. (杨思节,冯巍巍,蔡宗岐,王清. 光谱学与光谱分析), 2021 , 41 ( 8 ): 2469 - 2473 .
Shan J J , Zhao J B , Zhang Y T , Liu L F , Wu F C , Wang X . Anal. Chim. Acta , 2019 , 1050 : 161 - 168 .
Meyers N , Catarino A I , Declercq A M , Brenan A , Devriese L , Vandegehuchte M , De Witte B , Janssen C , Everaert G . Sci. Total Environ. , 2022 , 823 : 153441 .
Choobbari M L , Bahramvandi Y P , Ciaccheri L , Ottevaere H . Towards Online Monitoring of Water Pollutants:an Optofluidic Chip for Characterizing Microplastics in Water . 2024 . https://www.spiedigitallibrary.org/conference-proceedings-of-spie/12997/3025770/Towards-online-monitoring-of-water-pollutants--an-optofluidic-chip/10.1117/12.3025770.full https://www.spiedigitallibrary.org/conference-proceedings-of-spie/12997/3025770/Towards-online-monitoring-of-water-pollutants--an-optofluidic-chip/10.1117/12.3025770.full .
Chen X , Zhou J , Yuan L M , Huang G , Chen X , Shi W . IEEE Access , 2021 , 9 : 47615 - 47620 .
Back H D M , Junior E C V , Alarcon O E , Pottmaier D . Chemosphere , 2022 , 287 : 131903 .
Huang H , Sun Z H , Liu S C , Di Y N , Xu J Z , Liu C C , Xu R , Song H , Zhan S Y , Wu J P . Sci. Total Environ. , 2021 , 776 : 145960 .
Fiore L , Serranti S , Mazziotti C , Riccardi E , Benzi M , Bonifazi G . Environ. Sci. Pollut. Res. , 2022 , 29 ( 32 ): 48588 - 48606 .
Levermore J M , Smith T E L , Kelly F J , Wright S L . Anal. Chem. , 2020 , 92 ( 13 ): 8732 - 8740 .
Karlsson T M , Grahn H , Van Bavel B , Geladi P . J. Near Infrared Spectrosc. , 2016 , 24 ( 2 ): 141 - 149 .
Serranti S , Palmieri R , Bonifazi G , Cózar A . Waste Manage . (Oxford) , 2018 , 76 : 117 - 125 .
Kamruzzaman M , Sun D-W , Elmasry G , Allen P . Talanta , 2013 , 103 : 130 - 136 .
Cai H W , Du F N , Li L Y , Li B W , Li J N , Shi H H . Sci. Total Environ. , 2019 , 669 : 692 - 701 .
Vidal C , Pasquini C . Environ. Pollut. , 2021 , 285 : 117251 .
Wang J M , Gao X . J. Instrum. Anal. (王佳敏,高峡. 分析测试学报), 2025 , 44 ( 5 ): 936 - 946 .
He X J , Li J Y . J. Instrum. Anal. (何晓杰,李菊英. 分析测试学报), 2024 , 43 ( 8 ): 1135 - 1143 .
0
Views
34
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution