BI Jun,ZHANG Sha-sha,LI Meng,ZHANG Jia-ning,CHEN Da-wei.Quality Difference Analysis of Panjin Rice and Construction of Identification Model[J].Journal of Instrumental Analysis,2025,44(04):602-610.
BI Jun,ZHANG Sha-sha,LI Meng,ZHANG Jia-ning,CHEN Da-wei.Quality Difference Analysis of Panjin Rice and Construction of Identification Model[J].Journal of Instrumental Analysis,2025,44(04):602-610. DOI: 10.12452/j.fxcsxb.240827350.
Quality Difference Analysis of Panjin Rice and Construction of Identification Model
The method for the determination of volatile components in rice was established based on solid-phase microextraction/gas chromatography-mass spectrometry(SPME/GC-MS). This method was used to detect and analyze the volatile components in 12 kinds of Panjin rice varieties mainly planted in Panjin area and 10 kinds of non-Panjin rice. A total of 23 volatile components were detected,including 4 kinds of alcohols,10 kinds of aldehydes,4 kinds of ketones,1 kind of esters,and 4 other kinds such as alkanes and acid phenols. Area normalization method was used to calculate the relative content of each volatile component and R language was used to dig the data deeply. The linear regression model and random forest model were constructed to study the identification methods of Panjin rice and non-Panjin rice. The results showed that both mathematical models established in this study can complete the identification of Panjin rice with high accuracy and excellent classification effect. The prediction accuracy was 100%. These two mathematical models have their own advantages and support each other,which greatly improve the reliability of Panjin rice identification and provide theoretical support for the study on production area protection of geographical indication product——Panjin rice.
关键词
Keywords
references
Huang Y W , Xu J , Wang R L , Dou K N . Food Ind. (黄亚伟 , 徐晋 , 王若兰 , 豆康宁 . 食品工业) , 2016 ,( 4 ): 266 - 269 .
Liu M , Wang J J , Liu F H , Wang D , Tan S M . China Brew. (刘敏,王健健,刘芳宏,王丹,谭书明. 中国酿造), 2017 , 36 ( 6 ): 170 - 174 .
Hu X Q , Lu L , Guo Z L , Zhu Z W . Trends Food Sci. Technol. , 2020 , 97 : 136 - 146 .
Chen T , Chen X , Meng L , Wei Z , Chen B , Wang Y , Chen H , Cheng Q . Anal. Lett. , 2022 , 55 ( 13 ): 2033 - 2045 .
Zhao Q Y , Yousaf L , Xue Y , Shen Q . J. Sci. Food Agric. , 2020 , 100 ( 8 ): 3435 - 3444 .
Xu J Y , Liu K W , Zhang C . Trends Food Sci. Technol. , 2021 , 109 : 83 - 93 .
Zheng Z C , Zhang C , Liu K W , Liu Q Q . Rice , 2022 , 15 ( 1 ): 53
Ramtekey V , Cherukuri S , Modha K G , Kumar A , Kethineni U B , Pal G , Singh A N , Kumar S . Rev. Anal. Chem. , 2021 , 40 ( 1 ): 272 - 292 .
Al-Dalali S , Zheng F P , Sun B G , Zhou C X , Li M , Chen F . LWT-Food Sci . Technol. , 2020 , 133 : 109969 .
Wang Z Y , Dou B X , Ma C M , Zhang Y L , Liu Y , Zhang N . Food Sci. Technol. , 2022 , 43 : e100222 .
Miao R R , Sun Y , Shi C B , Jiang L Z . Food Res. Dev . (苗榕芯,孙莹,石长波,江连洲. 食品研究与开发), 2020 , 41 ( 4 ): 219 - 224 .
Jiang L Y , Tan J , Xiao X S . J. Chin. Cereals Oils Assoc . (蒋黎艳,谭姣,肖新生. 中国粮油学报), 2021 , 36 ( 5 ): 174 - 183 .
Zhu Q W , Yang Y J , Zeng Z L , Peng T , Yan X H , Zhao J X , Xia J H , Yu P , Wen X F , Gong D M . Ind. Crops Prod. , 2023 , 201 : 116907 .
Majcher M , Jeleń H H . J. Food Compos. Anal. , 2009 , 22 ( 6 ): 606 - 612 .
Ye Z K , Zeng Y , Lin Q B , Wu X F , Hao T Y , Dong B , Li D , Zhong H N . J. Instrum. Anal. (叶智康,曾莹,林勤保,吴学峰,郝天英,董犇,李丹,钟怀宁. 分析测试学报), 2021 , 40 ( 11 ): 1596 - 1603 .
Zhang Y , Lou F M , Yang J W , Yu L . J . Southwest China Norm. Univ. : Nat. Sci. Ed . (张莹,娄方明,杨建文,余兰. 华南师范大学学报:自然科学版), 2022 , 54 ( 6 ): 44 - 50 .
Strawn L K , Fortes E D , Bihn E A , Nightingale K K , Gröhn Y T , Worobo R W , Wiedmann M , Bergholz P W . Appl. Environ. Microbiol. , 2013 , 79 ( 2 ): 588 - 600 .
Su J Y , Zhang J , Li J Q , Duan Z L , Li T , Liu H G , Wang Y Z . Mod. Food Sci. Technol. (苏久艳,张霁,李杰庆,段智利,李涛,刘鸿高,王元忠. 现代食品科技), 2019 , 35 ( 2 ): 223 - 231 .
McGrath T F , Shannon M , Chevallier O P , Ch R , Xu F , Kong F Z , Peng H , Teye E , Akaba S , Wu D , Wu L B , Cai Q , Nguyen D D L , Le V V M , Pandor S , Kapil A P , Zhang G T , McBride M , Elliott C T . J. AOAC Int. , 2021 , 104 ( 1 ): 16 - 28 .
Wang Q , Yu Y J , Fu H Y , Li X , Yang J . J. Instrum. Anal. (王巧,于永杰,付海燕,李翔,杨健. 分析测试学报), 2023 , 42 ( 4 ): 389 - 401 .
Li H , Gong Y , Ye J D , Yue J X , Zhen R Y , Zhou X Y . Food Res. Dev . (李航,龚颍,叶金铎,岳建雄,甄润英,周学永. 食品研究与开发), 2020 , 41 ( 19 ): 30 - 35 .
Cui L L , Zhao S , Zhou Y M , Wang H , Yan B B , Zhang H , Zhou X L . J. Chin. Cereals Oils Assoc . (崔琳琳,赵燊,周一鸣,王惠,闫贝贝,张欢,周小理. 中国粮油学报), 2018 , 33 ( 12 ): 134 - 141 .
Akhoundzadeh H , Gholami A , Masoum S , Moazeni-Pourasil R S . Chromatographia , 2018 , 81 : 931 - 945 .
Study on Classification Model for Tobacco Extracts Based on Random Forest Algorithm
Rapid Screening of 4 Banned Substances in Acne-clearing Cosmetics by UV Spectroscopy Combined with Machine Learning Algorithm
Preparation of a Graphene Composite Coating for Solid phase Microextraction and Its Determination of Four Benzene Hexachloride Pesticide Residues in Water Samples
Related Author
CHEN Da-wei
ZHANG Jia-ning
LI Meng
ZHANG Sha-sha
BI Jun
DING Sha
SHEN Tao-rong
ZHANG Yan-fei
Related Institution
School of Chemical Engineering,Ocean and Life Sciences,Dalian University of Technology,Panjin
China National Center for Food Safety Risk Assessment,Beijing