浏览全部资源
扫码关注微信
中山大学 中法核工程与技术学院,广东 珠海 519082
Published:15 October 2024,
Received:19 August 2024,
Revised:27 September 2024,
移动端阅览
黄天爱,刘子若,李俊毅,阳文彬,冯卓贤,袁岑溪,王天翔,陈胜利.多元统计方法在核取证溯源分析中的研究进展[J].分析测试学报,2024,43(10):1545-1558.
HUANG Tian-ai,LIU Zi-ruo,LI Jun-yi,YANG Wen-bin,FENG Zhuo-xian,YUAN Cen-xi,WANG Tian-xiang,CHEN Sheng-li.Research on Multivariate Statistical Analysis Method in Nuclear Forensics Traceability Analysis[J].Journal of Instrumental Analysis,2024,43(10):1545-1558.
黄天爱,刘子若,李俊毅,阳文彬,冯卓贤,袁岑溪,王天翔,陈胜利.多元统计方法在核取证溯源分析中的研究进展[J].分析测试学报,2024,43(10):1545-1558. DOI: 10.12452/j.fxcsxb.240819324.
HUANG Tian-ai,LIU Zi-ruo,LI Jun-yi,YANG Wen-bin,FENG Zhuo-xian,YUAN Cen-xi,WANG Tian-xiang,CHEN Sheng-li.Research on Multivariate Statistical Analysis Method in Nuclear Forensics Traceability Analysis[J].Journal of Instrumental Analysis,2024,43(10):1545-1558. DOI: 10.12452/j.fxcsxb.240819324.
国家高度重视核安全,习近平总书记多次在全球核安全峰会上强调核材料溯源取证的重要性。核材料溯源取证,是对核材料及放射性材料进行检查分析,以溯源其性质、制造的时间、地点、方式及预期用途。目前关于该领域的前沿研究方向是基于数据库信息,利用多元统计方法溯源未知核材料的来源信息。该文回顾了近年来的核取证研究进展,并指出存在数据依赖性强、模型缺乏定量分析能力和普适性等不足。为克服这些局限,该文介绍了最新的线性拟合方法实现溯源取证分析。基于经济合作与发展组织核能署(OECD/NEA)于2017年发布的SFCOMP-2.0乏燃料数据库,以不同核素浓度作为样品特征,提出了线性关系假设并通过数据库数据和压水堆(PWR)与沸水堆(BWR)模拟结果进行了检验。结果表明,线性关系假设在PWR和BWR中均适用,并可用于预测燃料的初始富集度和燃耗量。此外,应用3种机器学习方法(逻辑回归、支持向量机、多层感知器)实现对PWR和BWR的分类。最后,应用KNN分类、随机森林和多层感知器算法改进了核取证分类模型,提高了模型对各反应堆的分辨能力。
The state attaches great importance to nuclear safety. General Secretary Xi Jinping has repeatedly emphasized the significance of nuclear material traceability and forensics at the Global Nuclear Security Summits. Nuclear material traceability forensics is the inspection and analysis of nuclear and radioactive materials to trace their nature,time,place,method and intended use. At present,the cutting-edge research direction in this field is to trace the source information of unknown nuclear materials by using multivariate statistical method based on database information. This paper reviews the progress of nuclear forensics research in recent years,and points out that there are still shortcomings such as strong data dependence,lack of quantitative analysis ability and universality of models. In order to overcome these limitations,this paper introduces the latest linear fitting method to achieve traceability forensic analysis. Based on the SFCOMP-2.0 spent fuel database published by OECD/NEA in 2017,the linear relationship hypothesis was proposed with different nuclide concentration ratios as sample characteristics and tested by the database data and the simulation results of pressurized water reactor(PWR) and boiling water reactor(BWR). The results show that the linear relation hypothesis is suitable for both PWR and BWR,and can be used to predict the initial enrichment degree and burnup amount of fuel. In addition,three machine learning methods(LGR,SVM and MLP) are used to classify PWR and BWR.The research presented in this paper provides a new approach and technique for nuclear material traceability and forensics,which is of great theoretical and practical significance for improving the monitoring and prevention capabilities of nuclear safety. Finally,KNN classification,random forest and multi-layer perceptron algorithm are used to improve the nuclear forensics classification model and improve the ability to distinguish each reactor.
核安全分析核材料溯源取证线性方法乏燃料
nuclear safety analysisnuclear materialforensics traceabilitylinear methodspent fuel
Teng J Q. Research on U.S. Nonproliferation and Counterproliferation Policies. Beijing:Military Yi Wen Publishing House(滕建群. 美国防扩散与反扩散政策研究. 北京:军事谊文出版社),2011.
Kristo M J. Nuclear Forensics.Handbook of Radioactivity Analysis:Volume 2. Los Angeles:Academic Press,2020:921-951.
Varga Z,Wallenius M,Krachler M,Rauff-Nisthar N,Fongaro L,Knott A,Nicholl A,Mayer K. TrAC. Trends. Anal. Chem.,2022,146:116503.
Varga Z,Nicholl A,Wallenius M,Mayer K. J. Radioanal. Nucl. Chem.,2024,333:3553-3558.
Andrew W J,Platzner I,Philip F A. J. Anal. At. Spectrom.,1993,8(1):19-23.
Groff A. Nucl. Technol.,1983,62:335-352.
Everitt B S,Dunn G. Applied Multivariate Data Analysis. Third Edition. London:Edward Arnold,1991.
Nicolaou G. J. Environ. Radioact.,2006,86(3):313-318.
Nicolaou G. J. Environ. Radioact.,2008,99(10):1708-1710.
Nicolaou G. J. Radioanal. Nucl. Chem.,2008,279:503-508.
Belkin M,Niyogi P P. Neural Comput.,2003,15:1373-1396.
Duda R,Hart P,Stork D. Pattern Classification. 2nd Edition. New York:Wiley-Interscience, 2001.
Breiman L. Mach. Learn,2001,45:5-32.
Parzen E. Ann. Math. Stat.,1962,33:1065-1076.
Pan Z W,Dao H X,Quan W X,Ding X Z. J. Complexity,2008,24(5/6):606-618.
Jones A E,Turner P,Zimmerman C,Goulermas J Y. Anal. Chem.,2014,86(11):5399-5405.
Dayman K J,Coble J B,Orton C R,Schwantes J M. Nucl. Instrum. Methods Phys. Res. A,2014,735:624-632.
Knief R. Nuclear Engineering:Theory and Technology of Commercial Nuclear Power. La Grange Park. IL:ANS,2008.
Ilas G,Gauld I. Trans. Am. Nucl. Soc.,2006,94:385-387.
Reading D G,Croudace I W,Warwick P E,Cigliana K A. J. Environ. Radioact.,2016,162/163:172-181.
Ha G,Heo G,Seo H,Choi Y. J. Radioanal. Nucl. Chem.,2019,320:665-678.
Lee S,Jin K,Kim J,Heo G. J. Radioanal. Nucl. Chem.,2017,312:495-505.
Vesterlund A,Ramebäck,J. Radioanal. Nucl. Chem.H.,2019,322:941-948.
O’Neal P J,Chirayath S S,Cheng Q. Nucl. Sci. Eng.,2022,196(7):811-823.
Elgad N,Babayew R,Last M,Weiss A,Gilad E,Levy G K,Halevy I. J. Radioanal. Nucl. Chem.,2024,333:2321-2337.
Onkangi J N,Angeyo H K. J. Appl. Spectrosc.,2024,90:1325-1333.
Liu C A,Song J S,Wu J. Nucl. Sci. Eng.(刘成安,宋家树,伍钧. 核科学与工程),2009,29(4):379-384.
Wu J,Zhu J Y,Zhang S B. Proceedings of the National Conference on Hazardous Materials and Safety Emergency Technology(Volume II)(伍钧,朱剑钰,张松柏. 全国危险物质与安全应急技术研讨会论文集(下)),2011:6.
Wang W,Xu J,Zhai L H,Shen X P,Yuan X L,Wei G Y,Fang S,Deng H,Li Z M. J. Chin. Mass Spectrom. Soc.(汪伟,徐江,翟利华,沈小攀,袁祥龙,韦冠一,方随,邓虎,李志明. 质谱学报),2019,40(6):518-524.
Wang W,Xi R Y,Guo S Q,Xu J,Kang T,Wei G Y,Li X S,Li M,Li Z M,Chen B,Wang Y L,Li Y Y. J. Instrum. Anal.(汪伟,席瑞阳,郭思琪,徐江,康泰,韦冠一,李雪松,李萌,李志明,陈彬,王亚龙,粟永阳.分析测试学报),2023,42(4):473-479.
Xi R Y,Wang Y L,Guo S Q,Wang W,Xu J,He Y J,Fan J L,Huo Y K,Wang Y F,Fang S,Li Z M,Zhang X L. J. Instrum. Anal.(席瑞阳,王亚龙,郭思琪,汪伟,徐江,何亚姣,凡金龙,霍艳坤,王玉凤,方随,李志明,张小林. 分析测试学报),2024. DOI:10.12452/j. fxcsxb. 24040202http://dx.doi.org/10.12452/j.fxcsxb.24040202.
Hu G C,Xiang Y C,Wu H L,Liu X. Nucl. Technol.(胡广春,向永春,伍怀龙,刘晓波. 核技术),2015,38(3):67-71.
Dang X J,Wei M F,Wu L Q,Zhang L P. Nucl. Electron. Detect. Technol.(党晓军,韦孟伏,吴伦强,张连平.核电子学与探测技术),2020,40(5):761-763.
Su J H,Wu J,Hu S D. Acta Phys. Sin.(苏佳杭,伍钧,胡思得. 物理学报),2019,68(9):53-60.
Su J H,Wu J,Hu S D. Ann. Nucl. Energy,2019,131:325-331.
Zhang Z Z,Yang J M,Qiu W X,Shi J J,Yuan C X,Zhang C Y,Zhu J Y,Su J H,Chen S L. Ann. Nucl. Energy,2022,173:109-121.
Chen S L,Wang T X,Zhang Z,Li R F,Yuan S,Zhang R Y,Yuan C X,Zhang C Y,Zhu J Y. Phys. Rev. Appl.,2023,19:034028.
Smola A,Vishwanathan S V N. Introduction to Machine Learning. Cambridge:Cambridge University Press,2008.
Zhou Z H. Machine Learning. Beijing:Tsinghua University Press(周志华. 机器学习. 北京:清华大学出版社),2016.
Haykin S. Neural Networks:A Comprehensive Foundation. 2nd ed. Upper Saddle River,N. J:Prentice Hall,1998.
Wang T X,Yang H,Chen S L,Yuan C X. Ann. Nucl. Energy,2025,211:110952.
0
Views
39
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution