浏览全部资源
扫码关注微信
1.华东交通大学 材料科学与工程学院,江西 南昌 330013
2.中国地质大学(北京) 材料科学与工程学院, 北京 100083
Received:16 August 2024,
Revised:10 December 2024,
Published:15 July 2025
移动端阅览
方智利,聂莹,张辉,张昊文,阮笃宇,聂启祥.三嗪基共价有机聚合物复合碳纳米管检测多巴胺的研究[J].分析测试学报,2025,44(07):1413-1419.
FANG Zhi-li,NIE Ying,ZHANG Hui,ZHANG Hao-wen,RUAN Du-yu,NIE Qi-xiang.Study on Detection of Dopamine by Carbon Nanotubes with Triazinyl Organic Covalent Polymer[J].Journal of Instrumental Analysis,2025,44(07):1413-1419.
方智利,聂莹,张辉,张昊文,阮笃宇,聂启祥.三嗪基共价有机聚合物复合碳纳米管检测多巴胺的研究[J].分析测试学报,2025,44(07):1413-1419. DOI: 10.12452/j.fxcsxb.240816318.
FANG Zhi-li,NIE Ying,ZHANG Hui,ZHANG Hao-wen,RUAN Du-yu,NIE Qi-xiang.Study on Detection of Dopamine by Carbon Nanotubes with Triazinyl Organic Covalent Polymer[J].Journal of Instrumental Analysis,2025,44(07):1413-1419. DOI: 10.12452/j.fxcsxb.240816318.
共价有机聚合物作为一类多孔材料,其比表面积大,活性位点多和结构可设计性强,具有作为电化学传感器的潜力。但由于导电性能较差,限制了其作为电催化剂的应用。一种有效的策略是将其引入导电相。该文在溶剂热条件下合成了一种新型共价有机聚合物Br-COPs,并用X射线衍射(XRD)、扫描电镜(SEM)对其结构进行了表征,结果表明,Br-COPs是菊花丝带状多孔无定形聚合物。将Br-COPs与多壁碳纳米管复合改性玻璃碳电极(GCE)应用于多巴胺的检测。实验结果表明,通过Br-COPs与多壁碳纳米管复合,产生协同作用,大大提高了改性电极的电催化多巴胺性能。在最佳条件下,设计的传感器对多巴胺的响应较快,线性浓度范围为0.9~6.25 μmol/L和12.5~400 μmol/L,检出限为0.071 μmol/L。该传感器成功用于真实样品中多巴胺的检测。
As a class of porous materials,covalent organic polymers have the potential to be used as electrochemical sensors because of their large specific surface area,multiple active sites and strong designability. However,due to its poor electrical conductivity,its application as an electrocatalyst is limited. An effective strategy is to introduce a conductive phase. A novel covalent organic polymer Br-COPs was synthesized under solvothermal conditions. The structures were characterized by X-ray diffraction(XRD) and scanning electron microscopy(SEM). XRD patterns showed that the prepared Br-COP had an amorphous structure. Scanning electron microscopy analysis showed that Br-COPs was a disc porous polymer. Br-COP was combined with multi-walled carbon nanotubes to modify the glass carbon electrode(GCE),which was used for the detection of dopamine. The experimental results showed that the synergistic effect of Br-COPs combined with multi-walled carbon nanotubes greatly improved the electrocatalytic dopamine performance of the modified electrode. Under the optimal conditions,the designed sensor responded quickly to dopamine,with a linear concentration range of 0.9-6.25 μmol/L and 12.5-400 μmol/L and a detection limit of 0.071 μmol/L. The sensor was successfully used to detect dopamine in real samples.
Kalia L V , Lang A E . Lancet , 2015 , 386 : 896 - 912 .
Thomas M D . Textbook of Biochemistry with Clinical Correlations. New York:Wiley , 1997 : 940 - 951 .
Hefco V , Yamada K , Hefco A , Hritcu L , Tiron A , Nabeshima T . Eur. J. Pharmacol. , 2003 , 475 : 55 - 60 .
Zamani H , Bahrami H R , Chalwadi P , Garris P A , Mohseni P . IEEE Trans. Neural Syst. Rehabil. Eng. , 2018 , 26 : 51 - 59 .
Zhang S , Zhou R Z , Zhang W C , Pei F , Shi H L . Food Res. Dev. (张杉,周瑞泽,张文超,裴帆,史海良. 食品研究与开发), 2021 , 42 ( 13 ): 151 - 158 .
Pan Z H , He G X , Hu X M , Liu Q R , Wang X . Chin. J. Anal. Lab. (潘自红,贺国旭,胡小明,刘巧茹,王霞.分析试验室), 2011 , 30 ( 11 ): 89 - 91 .
Dong Z Y , Xia S Y , Alboull A M A , Mostafa I M , Abdussalam A , Zhang W , Han S , Xu G B . ACS Appl. Nano Mater. , 2024 , 7 ( 3 ): 2983 - 2991 .
Feng S N , Yan M G , Xue Y , Huang J S , Yang X R . Chem. Commun. , 2022 , 58 : 6092 - 6095 .
Su J , Li B R , Bai Y Y , Ji W J , Yang H Y , Fan Z F . Chin . J. Inorg. Chem. (苏婧 ,李冰融,白乙艳,籍文娟,杨海英,范哲锋. 无机化学学报), 2024 , 40 ( 7 ): 1337 - 1346 .
Doan T L L , Tran M X , Nguyen D L T , Nguyen D C . Phys. Chem. Chem. Phys. , 2024 , 26 ( 26 ): 18449 - 18458 .
Thomas T , Mascarenhas R J , Martis P , Mekhalif Z , Swamy B E K . Mater. Sci. Eng. C , 2013 , 33 : 3294 - 3302 .
Rezaei B , Boroujeni M K , Ensafi A A . Biosens. Bioelectron. , 2015 , 66 : 490 - 496 .
Priyatharshni S , Tamilselvan A , Viswanathan C , Ponpandian N . J. Electrochem. Soc. , 2017 , 164 ( 4 ): B152 - B158 .
Nazari Z , Nematollahi M H , Zareh F , Pouramiri B , Mehrabani M . Chemistryselect , 2023 , 8 ( 3 ): e202203630 .
Supritha , K M , Suma B P , Pandurangappa M . J. Appl. Electrochem. , 2023 , 53 ( 12 ): 2457 - 2468 .
Wang C L , Liu N Z , Liu X J , Tian Y , Zhai X F , Chen X W , Hou B R . ACS Appl. Nano Mater. , 2021 , 4 ( 9 ): 8801 - 8812 .
Tang L , Li S , Han F , Liu L , Xu L , Ma W , Kuang H , Li A , Wang L , Xu C . Biosens. Bioelectron. , 2015 , 71 : 7 - 12 .
Huang N , Day G , Yang X , Drake H , Zhou H C . Sci. China Chem. , 2017 , 60 : 1007 - 1014 .
Zhang S , Li H , Wang S O . ACS Cent. Sci. , 2024 , 10 ( 1 ): 7 - 9 .
Ejaz M , Mohamed M G , Chang W C , Kuo S W . J. Polym. Sci. , 2024 , 62 ( 8 ): 1629 - 1638 .
Feng J , Zhang Y J , Ma S H , Yang C , Wang Z P , Ding S Y , Li Y , Wang W . J. Am. Chem. Soc. , 2022 , 144 : 6594 - 6603 .
Jena H S , Krishnaraj C , Satpathy B K , Rawat K S , Leus K , Veerapandian S , Morent R , De Geyter N , Van Speybroeck V , Pradhan D . ACS Appl. Nano Mater. , 2023 , 6 ( 24 ): 22684 - 22692 .
Yan M , Liu X B , Gao Z Z , Wu Y P , Hou J L , Wang H , Zhang D W , Liu Y , Li Z T . Org. Chem. Front. , 2019 , 6 : 1698 - 1704 .
Kuhn P , Antonietti M , Thomas A . Angew Chem. Int. Ed. , 2008 , 47 : 3450 - 3453 .
Wei P , He X , Zheng Z , He D , Li Q , Gong J , Zhang J , Sung H H Y , Williams I D , Lam J W Y , Liu M , Tang B Z . Angew Chem. Int. Ed. , 2021 , 60 : 7148 - 7154 .
Zhang K X , Wu W , Fan J , Zhong Y , Zhang L P , Xu H , Mao Z P , Ji B L . ACS Appl. Polym. Mater. , 2024 , 6 ( 11 ): 6458 - 6468 .
Li X L , Liu Q B , Yang B L , Liao Z J , Yan W S , Xiang Z H . Adv. Mater. , 2022 , 34 ( 36 ): 2204570 .
Liu S Y , Zhao Y B , Shi W Q , Yuan L Y . J. Nucl. Radiochem. (刘思妍,赵玉宝,石伟群,袁立永 . 核化学与放射化学) , 2024 , 46 ( 3 ): 246 - 257 .
Xu R , Si D H , Zhao S S , Wu Q J , Wang X S , Liu T F , Zhao H , Cao R , Huang Y B . J. Am. Chem. Soc. , 2023 , 145 ( 14 ): 8261 - 8270 .
Liu L H , Yang C X , Yan X P . J. Chromatogr. A , 2017 , 1479 : 137 - 144 .
Lee S E , Lee M Y , Lee M K , Jeong E Y , Lee Y S . Appl. Surf. Sci. , 2016 , 369 : 189 - 195 .
Tsierkezos N G , Ritter U , Thaha Y N , Downing C , Szroeder P , Scharff P . Microchim. Acta , 2016 , 183 : 35 - 47 .
Bi H Q , Li Y H , Liu S F , Guo P Z , Wei Z B , Lv C X , Zhang J Z , Zhao X S . Sens. Actuatars B , 2012 , 171 : 1132 - 1140 .
Zhang M D , Si D H , Yi J D , Zhao S S , Huang Y B , Cao R . Small , 2020 , 16 ( 52 ): e2005254 .
Bard A J , Faulkner L R . Electrochemical Methods : Fundamentals and Applications , 2 nd ed . Wiley , New York , 2001 .
Raj M A , John S A . Anal. Methods , 2014 , 6 : 2181 - 2188 .
Zhen H S , Xiao Q Z , Jian Y X , Wen J B , Feng B W , Xing H X . Biosens. Bioelectron . , 2012 ,34, 125 - 131 .
Yang X , Liu L H , Tan W F , Qiu G H , Liu F . J. Hazard. Mater. , 2018 , 354 : 107 - 115 .
Zheng D Y , Liu X J , Zhu S Y , Cao H M , Chen Y G , Hu S S . Transducer Microsyst. Technol. (郑冬云,刘晓军,朱珊莹,曹汇敏,陈亚光,胡胜水. 传感器与微系统), 2013 , 32 ( 11 ): 86 - 88 .
Rasha R P , Annamalai R N , Muhammed F P , Rajanikant G K , Raghu C , Mini M M . J. Mater. Chem. C , 2022 , 10 : 3048 - 3060 .
Zhang C Z , Wang L W , Lu Y K , Zheng G J , Peng J Y . Chin. J. Anal. Chem. (张翠忠,王丽伟,卢永课,郑广进,彭金云.分析化学), 2016 , 44 ( 8 ): 1263 - 1269 .
Wang Y , Wang L Y , Zhuang Q F . J. Alloy. Compd. , 2019 , 802 : 326 - 334 .
Lei P , Zhao S , Asif M , Aziz A , Zhou Y , Dong C , Li M L , Shuang S M . Langmuir , 2024 , 40 ( 22 ): 11635 - 11641 .
Mahbob E N M , Ahmad M S , Isa I M , Hashim N , Ul-Hamid A , Saidin M I , Si S M . Bull. Chem. Soc. Ethiop. , 2023 , 37 ( 4 ): 845 - 857 .
Liang J L , Chen X T , Hu K H . Phys. Test. Chem. Anal.Part B (梁金良,陈晓彤,胡坤华 . 理化检验-化学分册) , 2023 , 59 ( 12 ): 1381 - 1386 .
0
Views
3
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution