浏览全部资源
扫码关注微信
苏州大学 放射医学及交叉学科研究院,放射医学与辐射防护国家重点实验室,江苏 苏州 215123
Published:15 October 2024,
Received:20 July 2024,
Revised:20 August 2024,
移动端阅览
汪俞权,任若菡,申南南,肖宝,何旭昌,孙啟皓,何亦辉.脉冲激光用于钙钛矿CsPbBr3半导体中载流子输运性能表征[J].分析测试学报,2024,43(10):1645-1650.
WANG Yu-quan,REN Ruo-han,SHEN Nan-nan,XIAO Bao,HE Xu-chang,SUN Qi-hao,HE Yi-hui.Determining the Carrier Mobility-Lifetime Product in the Perovskite CsPbBr3 Semiconductor with a Pulsed Laser[J].Journal of Instrumental Analysis,2024,43(10):1645-1650.
汪俞权,任若菡,申南南,肖宝,何旭昌,孙啟皓,何亦辉.脉冲激光用于钙钛矿CsPbBr3半导体中载流子输运性能表征[J].分析测试学报,2024,43(10):1645-1650. DOI: 10.12452/j.fxcsxb.240720243.
WANG Yu-quan,REN Ruo-han,SHEN Nan-nan,XIAO Bao,HE Xu-chang,SUN Qi-hao,HE Yi-hui.Determining the Carrier Mobility-Lifetime Product in the Perovskite CsPbBr3 Semiconductor with a Pulsed Laser[J].Journal of Instrumental Analysis,2024,43(10):1645-1650. DOI: 10.12452/j.fxcsxb.240720243.
钙钛矿半导体具有优异的光电性能,被认为是新一代室温核辐射探测半导体。准确测定其载流子输运性能对于获得高性能钙钛矿半导体核辐射探测器至关重要。该文发展了以脉冲激光为激发源的钙钛矿半导体载流子输运性能表征方法。基于所制备的Au/CsPbBr
3
/Bi器件,将脉冲激光由阳极面入射,并采集探测器阴极的脉冲信号,通过不同偏压下脉冲信号的上升时间及幅值分布,拟合得到CsPbBr
3
半导体中空穴载流子的迁移率
μ
h
为11.78 cm
2
·V
-1
·s
-1
,迁移率寿命积
μτ
h
为2.82×10
-3
cm
2
·V
-1
,与传统以
241
Am
α
粒子为激发源的表征结果相当。该工作证明了以脉冲激光为激发源表征钙钛矿半导体的输运性能的可行性。基于CsPbBr
3
半导体较好的载流子输运性能,该探测器表现出良好的
γ
射线探测性能,对
57
Co@122 keV
γ
射线的能量分辨率为8.5%。
Perovskite semiconductors,renowned for their excellent optoelectronic properties,are regarded as promising candidates for next-generation room temperature nuclear radiation detectors. Accurately determining the charge carrier transport properties is crucial for developing high-performance perovskite semiconductor radiation detectors. In this work,we developed a characterization method for the carrier transport properties of perovskite semiconductors using a pulsed laser as the excitation source. Based on the fabricated Au/CsPbBr
3
/Bi device,the pulsed laser was incident from the anode side,and the pulse signals at the cathode of the detector were collected. By fitting the rise time and amplitude distribution of the pulse signals under different biases,the hole carrier mobility(
μ
h
) in the CsPbBr
3
semiconductor was determined to be 11.78 cm²·V
-1
·s
-1
,and the mobility-lifetime product(
μτ
h
) was 2.82×10
-3
cm²·V
-1
,comparable to those obtained using the traditional
241
Am
α
-particle as excitation source. This work demonstrates the feasibility of characterizing the transport properties of perovskite semiconductors using a pulsed laser as excitation source. Due to the good carrier transport properties,the detector exhibited excellent
γ
-ray detection performance,with an energy resolution of 8.5% for
57
Co 122 keV
γ
-rays.
钙钛矿半导体半导体探测器铯铅溴半导体载流子迁移率寿命积迁移率
perovskite semiconductorsemiconductor detectorCsPbBr3 semiconductorcarrier mobility lifetime productmobility
Zhou Y,Chen J,Bakr O M,Mohammed O F. ACS Energy Lett.,2021,6(2):739-768.
Milbrath B D,Peurrung A J,Bliss M,Webe W J. J. Mater. Res.,2011,23(10):2561-2581.
Enlow E,Abbaszadeh S. Front. Phys.,2023,11:1106546.
Bertolini G,Cappellani F,Restelli G. Nucl. Instrum. Methods,1973,112(1/2):219-228.
Hitomi K,Shoji T,Ishii K. J. Cryst. Growth,2013,379:93-98.
Sordo S D,Abbene L,Caroli E,Mancini A M,Zappettini A,Ubertini P. Sensors,2009,9(5):3491-3526.
He Z. Nucl. Instrum. Methods Phys. Res.,Sect. A,2001,463(1):250-267.
Shockley W. J. Appl. Phys.,1938,9(10):635-636.
Stoumpos C C,Malliakas C D,Peters J A,Liu Z F,Sebastian M,Im J,Chasapis T C,Wibowo A C,Chung D Y,Freeman A J,Wessels B W,Kanatzidis M G. Cryst. Growth Des.,2013,13(7):2722-2727.
He Y H,Matei L,Jung H J,McCall K M,Chen M,Stoumpos C C,Liu Z F,Peters J A,Chung D Y,Wessels B W,Wasielewski M R,Dravid V P,Burger A,Kanatzidis M G. Nat. Commun.,2018,9(1):1609.
He Y H,Petryk M,Liu Z F,Chica D G,Hadar I,Leak C,Ke W,Spanopoulos I,Lin W W,Chung D Y,Wessels B W,He Z,Kanatzidis M G. Nat. Photonics,2020,15(1):36-42.
Kim J Y,Lee J W,Jung H S,Shin H,Park N G. Chem. Rev.,2020,120(15):7867-7918.
de Arquer F P G,Armin A,Meredith P,Sargent E H. Nat. Rev. Mater.,2017,2(3):16100.
Zhang Z,Saparov B. Appl. Phys. Lett.,2021,119(3):030502.
Kasap S O,Kabir M Z,Ramaswami K O,Johanson R E,Richard J,Curry R J. J. Appl. Phys.,2020,128(12):124501.
Zhao X M,Liu T R,Kaplan A B,Yao C,Loo Y L. Nano Lett.,2020,20(12):8880-8889.
Zhang X,Ren X D,Liu B,Munir R,Zhu X J,Yang D,Li J B,Liu Y C,Smilgies D M,Li R P,Yang Z,Niu T Q,Wang X L,Amassian A,Zhao K,Liu S Z. Energy Environ. Sci.,2017,10(10):2095-2102.
Stoumpos C C,Malliakas C D,Kanatzidis M G. Inorg. Chem.,2013,52(15):9019-9038.
Hecht K. Zeitschrift für Physik,1932,77(3):235-245.
He Y H,Liu Z F,Mccall K M,Lin W W,Chung D Y,Wessels B W,Kanatzidis M G. Nucl. Instrum. Methods Phys.Res.,Sect. A,2019,922:217-221.
Sellin P J,Davies A W,Lohstroh A,Ozsan M E,Parkin J. IEEE Trans. Nucl. Sci.,2006,52:3074-3078.
Jana A,Cho S,Patil S A,Meena A,Jo Y,Sree V G,Park Y,Kim H,Im H,Taylor R A. Mater. Today,2022,55:110-136.
Zhang Z,Chung C C,Huang Z J,Vetter E,Seyitliyev D,Sun D L,Gundogdu K,Castellano F N,Danilov E O,Yang G. Mater. Lett.,2020,269:127667.
Jahnke A,Matz R. Med. Phys.,1999,26(1):38-48.
Kumar G A,Sharma S L,Choudhury R K. IEEE Trans. Nucl. Sci.,2007,54(2):333-341.
Loo B W,Goulding F S,Gao D. IEEE Trans. Nucl. Sci.,1988,35(1):114-118.
0
Views
69
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution