浏览全部资源
扫码关注微信
1.兰州大学稀有同位素前沿科学中心,甘肃 兰州 730000
2.兰州大学 核科学与技术学院,甘肃 兰州 730000
3.中南兰信(南京)辐射技术研究院有限公司,江苏 南京 211300
4.南京航空航天大学, 核分析技术研究所,江苏 南京 211106
Published:15 October 2024,
Received:16 July 2024,
Revised:24 August 2024,
移动端阅览
李佳桐,罗恩康,汤亚军,李珍,贾文宝,陈炼,蔡平坤,孙爱赟,黑大千.基于PGNAA技术的掩埋爆炸物检测装置设计及分析研究[J].分析测试学报,2024,43(10):1598-1607.
LI Jia-tong,LUO En-kang,TANG Ya-jun,LI Zhen,JIA Wen-bao,CHEN Lian,CAI Ping-kun,SUN Ai-yun,HEI Da-qian.Design and Analysis of Buried Explosive Detection Device Based on PGNAA Technology[J].Journal of Instrumental Analysis,2024,43(10):1598-1607.
李佳桐,罗恩康,汤亚军,李珍,贾文宝,陈炼,蔡平坤,孙爱赟,黑大千.基于PGNAA技术的掩埋爆炸物检测装置设计及分析研究[J].分析测试学报,2024,43(10):1598-1607. DOI: 10.12452/j.fxcsxb.240716226.
LI Jia-tong,LUO En-kang,TANG Ya-jun,LI Zhen,JIA Wen-bao,CHEN Lian,CAI Ping-kun,SUN Ai-yun,HEI Da-qian.Design and Analysis of Buried Explosive Detection Device Based on PGNAA Technology[J].Journal of Instrumental Analysis,2024,43(10):1598-1607. DOI: 10.12452/j.fxcsxb.240716226.
针对土壤中掩埋地雷的位置探测,开发了一种基于瞬发伽马射线中子活化分析技术(PGNAA)的多探测器地雷检测装置及检测方法。首先通过蒙特卡洛模拟,以D-T中子发生器以及BGO探测器作为核心部件进行装置设计,分别对探测器与中子发生器的相对位置、中子屏蔽层进行优化,并对仪器周围剂量进行模拟分析。在源与探测器的距离为21 cm,中子屏蔽层选择16 cm厚的含硼聚乙烯,D-T中子发生器中子产额为1×10
8
n/s条件下,装置周围设置2 m安全范围即可满足辐射剂量安全要求。基于优化模型进行装置平台搭建,蒙特卡洛MCNP模拟计算及实验测试结果表明,计算的地雷位置坐标与预设位置坐标之间的相对偏差处于可接受范围内,说明采用多探测器地雷检测装置以及多探测器检测方法进行地雷位置检测具有可行性。同时,针对复杂的土壤环境,基于蒙特卡洛MCNP模拟计算考察了土壤含水率、土壤本底元素、地雷质量等环境因素对于装置检测地雷位置的影响。模拟结果表明,土壤含水率在正常范围内变化时,对地雷检测系统检测精度的影响较小,但会对装置的可探测范围产生一定的影响。当土壤含水率由0%增加至35%时,“有效中子”通量降低13.8%左右,最终导致装置可探测范围降低至45 cm区间内。当土壤中的氮元素含量为1%~5%时,土壤中本底元素对地雷检测装置的测量精度及装置的可检测范围影响较小。装置的最小可检出样品质量约为1 100.8 g,随着样品质量的增大,其可检测范围随之增大,对于质量为3 317.5 g的地雷样品,装置的可检测范围达73 cm。最后,基于上述多探测器地雷检测装置及检测方法,对单探测器地雷检测系统及检测方法进行了初步探究,结果显示利用单探测器响应可实现地雷位置的有效检出。
Aiming at the problem of public safety,in the research,a multi-detector landmine detection device with detection method based on prompt gamma-ray neutron activation analysis(PGNAA) technology was developed for measuring the location detection of burie
d mines in soil. Firstly,based on the Monte Carlo simulation,the device was designed and optimized with D-T neutron generator and BGO detector as the core modules. The relative positions of detector and D-T neutron generator,as well as the neutron shielding layer were optimized,respectively,and the dose around the device was simulated and analyzed. According to the MCNP simulated results,the distance between the source and the detector is chosen as 21 cm. The borated polyethylene is chosen as the material of the neutron shielding layer,with the thickness is as 16 cm. When the neutron yield of the D-T neutron generator is 1×10
8
n/s,a safety range of 2 m is set around the device to meet the radiation dose safety requirements. Based on the optimization model,the experimental platform was built,and the Monte Carlo MCNP simulation and experiment was made for analysis. Both of the simulated and experimental results showed that the relative deviations between the calculated landmine coordinates and the pre-set coordinates were almost within the acceptable range,which proved the feasibility of the multi-detector landmine detection device and the multi-detector method for measuring the position of landmine. In addition,facing the complex soil environment,the impact of environmental factors,such as soil moisture content,background elements in the soil and landmine quality,were explored based on Monte Carlo MCNP simulated calculation. The simulated results showed that when the soil moisture content changed within the normal range,it had little impact on the detection accuracy of the mine detection system,however,it made an influence on the detection range of the device. When the soil moisture content increased from 0% to 35%,the “effective neutron” flux decreased by about 13.8%,and the detection range of the device finally reduced to 45 cm. When the content of nitrogen in soil was 1%-5%,the influence of background elements on both of the measurement accuracy and detection range of device was small. The minimum de
tectable sample mass of the device was about 1 100.8 g. As the sample mass increased,its detectable range increased at the same time. For the landmine sample with a mass of 3 317.5 g,the detectable range of the device reached 73 cm. Finally,based on the above multi-detector mine detection device and detection method,the single detector mine detection system and detection method are preliminarily explored,and the single detector response was used to achieve effective mine location detection.
爆炸物检测瞬发伽马射线中子活化分析(PGNAA)技术多探测器检测装置设计蒙特卡洛MCNP模拟单探测器响应
explosive detectionprompt gamma-ray neutron activation analysis(PGNAA) technologydesign of multi-detectors detection deviceMonte Carlo MCNP simulationsingle-detector response
Lazarowski L,Dorman D C. Appl. Anim. Behav. Sci.,2014,151:84-93.
Choodum A,Kanatharana P,Wongniramaikul W,Daeid N N. Talanta,2013,115:143-149.
Startsev M A,Elezzabi A Y. Isrn. Opt.,2014,2013:1-8.
López-López M,García-Ruiz C. TrAC-TrendsAnal. Chem.,2014,54:36-44.
Bauer A J R,Farrington M P,Sorauf K,Miziolek A W. Proc. SPIE,2014,9101:91010.
Zheng Y L,Wang Q,Yang L,Li Y,Wang G B. Nucl. Electron. Detect. Technol.(郑玉来,王强,杨璐,李永,王国宝. 核电子学与探测技术),2013,10:13-16
Chi Y T,Jing S W,Sang H F,Gu D S,Qiao S,Liu Y R,Liu L M. J. Isot. (迟艳涛,景士伟,桑海峰,谷德山,乔双,刘雨人,刘林茂. 同位素),2005,18(Z1):91-94.
Jia W B,Chen X W,Xu A G. J. Tsinghua Univ.:Sci. Technol. (贾文宝,陈晓文,徐爱国. 清华大学学报:自然科学版),2007,47(S1):960-962.
Landsberger S,Yellin J. J. Archaeol. Sci.-Rep.,2018,20 :622-625.
Liu Y,Rolle-Mcfarland D,Mostafaei F,Zhou Y Z,Li Y,Zheng W,Wells E,Nie L H. Physiol. Meas.,2018,39(3) :035003.
Seabury E H,Blackburn B W,Chichester D L,Wharton C J,Caffrey A J. Nucl. Instrum. Methods Phys. Res.,Sect. B,2007,261(1/2):839-844.
Kuznetsov A,Evsenin A,Gorshkov I,Osetrov O,Vakhtin D. AIP Conf. Proc.,2009,1191(1):13-23.
Fontana C L,Camera A,Lunardon M,Pino F,Sada C,Soramel F,Stevanato L,Nebbia G,Carasco C,Perot B,Sardet A,Sannie G,Iovene A,Tintori C,Grodzicki K,Moszyński M,Sibczyński P,Swiderski L,Moretto S. Phys. Proc.,2017,90:279-284.
He T,Wang X H,Zheng P,An L,Guo H P,Yang J,Zhu C X. Atom. Energy Sci. Technol.(何铁,王新华,郑普,安力,郭海萍,阳剑,朱传新. 原子能科学技术),2015,49(11):2097-2101.
Abdelati M,Abdelsalam A,Mongy S E. Measurement,2017,114:60-68.
Shaw T J,Brown D,D’Arcy J,Liu F,Shea P,Sivakumar M,Gozani T. Appl. Radiat. Isot.,2015,63(5/6):779-782.
Wharton C J,Seabury E H,Krebs K M,Caffrey A J. IEEE,2015. DOI:10.1109/NSSMIC.2015.7581754http://dx.doi.org/10.1109/NSSMIC.2015.7581754.
Lee W C,Mahood D B,Ryge P,Shea P,Gozani T. Nucl. Instrum. Methods Phys. Res.,Sect. B,1995,99(1):739-742.
Nasrabadi M,Bakhshi F,Jalali M,Mohammadi A. Nucl. Instrum. Methods Phys. Res.,Sect. A,2011,659(1):378-382.
Wang H D,Li Y J,Yang Y G,Wang H Y,Hu S Z,Chen B X,Gao W H. Nucl. Electron. Detect. Technol. 王海东,李元景,杨祎罡,王宏渊,胡树植,陈伯显,高文焕. 核电子学与探测技术),2005,(4):384-387.
Li J T,Jia W B,Hei D Q,Cheng C,Cai P K,Tang Y J,Sun A Y,Zhao D,Hu Q. Appl. Radiat. Isot.,2021,169:109445.
Li J T,Jia W B,Hei D Q,Yao Z E,Cheng C,Zhao D,Sun A Y. J. Radioanal. Nucl. Chem.,2022,331:953-965.
Li J T,Jia W B,Hei D Q,Tang Y J,Cheng C,Cai P K,Sun A Y,Zhao D,Hu Q. J. Radioanal. Nucl. Chem.,2019,322:1719-1728.
Ye Q,Hong H H,Zhou F,Guo R,Li G Q,Wen L H,Chen L. J. Instrum. Anal.(叶倩,洪欢欢,周峰,郭荣,李刚强,闻路红,陈腊.分析测试学报),2021,40(4):589-595.
Wu H T,Wang G F,Dou X C. J. Instrum. Anal.(吴昊天,王广发,窦新存. 分析测试学报),2021,40(4):468-477.
Li J T,Jia W B,Hei D Q,Cai P K,Cheng C,Tang Y J. J. Radioanal. Nucl. Chem.,2018,318(2):1-8.
Cherry S R,Sorenson J A,Phelps M E. Physics in Nuclear Medicine(Fourth Edition). Amsterdam,Netherlands:Elsevier Inc.,2012.
Sun A Y,Jia W B,Li J T,Hei D Q,Dai W H,Cheng C,Cai P K,Tang Y J,Zhao D,Hu Q. J. Radioanal. Nucl. Chem.,2019,320(2):323-328.
Pazirandeh A,Azizi M,Masoudi S F. Appl. Radiat. Isot.,2006,64(1):1-6.
0
Views
37
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution