Enzymatic biofuel cells(EBFC)-based self-powered sensing device has the advantages of simple structure,easy miniaturization,and no need for external power supply. It exhibits potential application prospects in clinical diagnosis,environmental monitoring,biosensing and other fields. Reduced graphene oxide/Aurum nanoparticles/multi walled carbon nanotubes(rGO/AuNPs/MWCNTs) nanocomposite was used as electrode substrate materials. The bioanode and cathode of enzymatic biofuel cells were prepared via immobilization of glucose oxidase(GOx) and electroposition growth of manganese dioxide(MnO
2
) on the surface of rGO/AuNPs/MWCNTs modified electrodes,respectively. An enzymatic biofuel cells-based self-powered glucose biosensor(EBFC-SPGB) was constructed by combining as-prepared bioanode and cathode in supporting electrolyte at room temperature. In the presence of target glucose,the GOx fixed on the surface of the bioanode promotes an enzymatic reaction. The electrons generated by catalyzing glucose transferred to the cathode
through an external circuit,resulting in a reduction reaction of MnO
2
on the cathode surface and generating an electrochemical response signal. Due to the excellent conductivity,biocompatibility and large specific surface area of rGO/AuNPs/MWCNTs nanocomposite,the synergistic effect of nanocomposite can significantly increase loading amount of GOx and effectively promote electron transfer on the electrode surface. The maximum power output signal of the constructed EBFC-SPGB shows a good linear relationship with glucose concentration in the range of 1-30 mmol/L,with a detection limit(
S
/
N
=3) of 0.3 mmol/L,which can be applied to analysis of glucose concentration in human serum samples.
关键词
Keywords
references
Zhao C E , Gai P P , Song R B , Chen Y , Zhang J R , Zhu J J . Chem. Soc. Rev. , 2017 , 46 : 1545 - 1564 .
Gu C C , Gai P P , Li F . Nano Energy , 2022 , 93 : 106806 .
Katz E , Bückmann A F , Willner I . J. Am. Chem. Soc. , 2001 , 123 : 10752 - 10753 .
Zhang J L , Wang Y H , Huang K , Huang K J , Jiang H , Wang X M . Nano Energy , 2021 , 84 : 105853 .
Chen Y X , Ji W H , Yan K , Gao J , Zhang J D . Nano Energy , 2019 , 61 : 173 - 193 .
Fu L Y , Liu J J , Hu Z Q , Zhou M . Electroanalysis , 2018 , 30 : 2535 - 2550 .
Chen Y X , Gao J , Yan K , Yao X L , Liu Y , Zhang J D . Sens . Actuators B : Chem. , 2020 , 316 : 128130 .
Gu C C , Gai P P , Hou T , Li H Y , Xue C H , Li F . ACS Appl. Mater. Inter. , 2017 , 9 : 35721 - 35728 .
Hao S , Sun X X , Zhang H , Zhai J F , Dong S J . J. Mater. Chem. B , 2020 , 8 : 3393 - 3407 .
Xiao X X , McGourty K D , Magner E . J. Am. Chem. Soc. , 2020 , 142 : 11602 - 11609 .
Wang L L , Shao H H , Lu X Z , Wang W J , Zhang J R , Song R B , Zhu J J . Chem. Sci. , 2018 , 9 : 8482 - 8491 .
Du B Y , Lu H X , Zhang Z W , Wang Y , Hu X L , Chen Q C , Song M L , Liu M C . Biosens. Bioelectron. , 2022 , 216 : 114661 .
Wei J , Hu Q Q , Gao Y , Hao N , Qian J , Wang K . Anal. Chem. , 2021 , 93 : 6214 - 6222 .
Du X J , Jiang D , Liu Q , Hao N , Wang K . Anal. Chem. , 2019 , 91 : 1728 - 1732 .
Wu Y J , Luo D , Yi J F , Li R , Yang D , Pang P F , Wang H B , Yang W R , Zhang Y L . Analyst , 2024 , 149 : 2621 - 2628 .
Zhang X L , Wu D , Zhou X X , Yu Y X , Liu J C , Hu N , Wang H L , Li G L , Wu Y N . TrAC Trends Anal. Chem. , 2019 , 121 : 115668 .
Wang F T , Wang Y H , Xu J , Huang K J . J. Mater. Chem. B , 2020 , 8 : 1389 - 1395 .
Yu W , Kong X K , Gu C C , Gai P P , Li F . Sens . Actuators B : Chem. , 2020 , 307 : 127618 .
Gai P P , Gu C C , Hou T , Li F . Anal. Chem. , 2017 , 89 : 2163 - 2169 .
Wang F T , Huang K J , Hou Y Y , Tan X C , Wu X , Yu X M , Zhou X . Nanoscale , 2022 , 14 : 815 - 822 .
Ye J Q , Lu J H , Wen D . Mater. Chem. Front. , 2023 , 7 : 5806 - 5825 .
Del Campo F J . Curr. Opin. Electrochem. , 2023 , 41 : 101356 .
Teymourian H , Barfidokht A , Wang J . Chem. Soc. Rev. , 2020 , 49 : 7671 - 7709 .
Hardie D G . Science , 2017 , 357 ( 6350 ): 455 - 456 .
Wild S , Roglic G , Green A , Sicree R , King H . Diabetes Care , 2017 , 27 ( 5 ): 1047 - 1053 .
Hwang D W , Lee S , Seo M , Chung T D . Anal. Chim. Acta , 2018 , 1033 : 1 - 34
Saha T , Caño R D , Mahato K , Paz E D , Chen C R , Ding S C , Yin L , Wang J . Chem. Rev. , 2023 , 123 : 7854 - 7889 .
Zhang C , Ge X Y , Chen D W , Wu Y N . J. Instrum. Anal. (张弛,葛鑫禹,陈达炜,吴永宁. 分析测试学报), 2024 , 43 ( 7 ): 1058 - 1062 .
Yin X H , Yang X J , Luo D , Zhang Y L , Wang H B , Yang W R , Pang P F . J. Instrum. Anal. (尹学虎,杨新杰,罗丹,张艳丽,王红斌,杨文荣,庞鹏飞. 分析测试学报), 2023 , 42 ( 3 ): 315 - 322 .
Gogotsi Y , Anasori B . ACS Nano , 2019 , 13 : 8491 - 8494 .
Kalambate P K , Gadhari N S , Li X , Rao Z X , Navale S T , Shen Y , Patil V R , Huang Y H . Trends Anal. Chem. , 2019 , 120 : 115643 .
Wang Y , Zhang S , Du D , Shao Y Y , Li Z H , Wang J , Engelhard M H , Li J H , Lin Y H . J. Mater. Chem. , 2011 , 21 : 5319 - 5325 .
Žalnėravičius R , Klimas V , Naujokaitis A , Jagminas A , Ramanavičius A . Electrochim. Acta , 2022 , 426 : 140689 .
Sezer N , Koç M . Surf. Interfaces , 2019 , 14 : 1 - 8 .
Liu Y H , Xu J L , Gao X , Sun Y L , Lv J J , Shen S , Chen L S , Wang S D . Energy Environ. Sci. , 2017 , 10 : 2534 - 2543 .
Study of a Glucose Sensor Based on Carbon Dots/Glucose Oxidase Co-encapsulates Metal-Organic Framework
Detection of Glucose and Acid Phosphatase Using a Multifunctional Enzyme Cascade Sensing System Based on Hg2[Fe(CN)6] Nanozyme
Preparation of a Novel Urchin-like Tungsten Copper Self-supporting Electrode for Enzymeless Glucose Sensing
Related Author
YANG Wen-rong
ZHANG Chi
GE Xin-yu
CHEN Da-wei
WU Yong-ning
GUO Ao-huan
LI Ping
WANG Guang-li
Related Institution
School of Life and Environmental Sciences,Deakin University
China National Center for Food Safety Risk Assessment
School of Food and Health,Beijing Technology and Business University
School of Chemical and Material Engineering,Jiangnan University
Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology,Colleges and Universities Key Laboratory for Efficient Use of Agricultural Resources in the Southeast of Guangxi,College of Chemistry and Food Science,Yulin Normal University