BIAN Xi-hui,LIU Yu,WANG Yao,ZHANG Qiang,ZHANG Yan.Identification of Perilla Oil Adulteration by Ultraviolet-Visible Spectroscopy Combined with Chemical Pattern Recognition[J].Journal of Instrumental Analysis,2025,44(02):229-237.
BIAN Xi-hui,LIU Yu,WANG Yao,ZHANG Qiang,ZHANG Yan.Identification of Perilla Oil Adulteration by Ultraviolet-Visible Spectroscopy Combined with Chemical Pattern Recognition[J].Journal of Instrumental Analysis,2025,44(02):229-237. DOI: 10.12452/j.fxcsxb.240609117.
Identification of Perilla Oil Adulteration by Ultraviolet-Visible Spectroscopy Combined with Chemical Pattern Recognition
As an unconventional vegetable oil with high economic value and premium price,perilla oil is vulnerable to adulteration by cheap edible oils. Due to the uniform property and complex composition of edible oils,it is challenge to quickly and accurately determine the authenticity of perilla oil using traditional identification methods. In this research,the feasibility of ultraviolet-visible(UV-Vis) spectroscopy in conjunction with chemical pattern recognition techniques were investigated for the authentication of perilla oil. First,40 samples of pure perilla oil were purchased,then soybean oil and palm oil were added to the pure perilla oil in certain proportions to prepare 51 binary adulterated and 63 ternary adulterated perilla oil samples. Subsequently,based on different identification purposes,the total of 154 samples were used as two datasets. One is a genuine and adulterated perilla oil two-classification dataset,which is composed of 40 pure oil and 114 adulterated oil samples. The other is a three-classification dataset of 40 pure oil samples,51 binary adulterated,and 63 ternary adulterated perilla oil samples. Principal component analysis(PCA),soft independent modeling of class analogy(SIMCA),partial least squares-discriminant analysis(PLS-DA) and extreme learning machine(ELM) were compared for two-classification and three-classification datasets. Additionally,confusion matrices,accuracy,precision,recall and F1-score were used to evaluate classification performance. The results show that PLS-DA is the best classification model for two-classification and three-classification datasets with accuracy 98.04% and 100%,respectively. Therefore,UV-Vis spectroscopy combined with chemical pattern recognition can be used to achieve fast and accurate identification of genuine and adulterated perilla oils.
Park S M,Yu H Y,Chun H S,Kim B H,Ahn S. J. Oleo Sci.,2019,68(5):389-398.
Zhang Y,Qi X,Bai Y Z,Wang X F,Yu L,Zhang L X,Li P W. J. Food Saf. Food Qual.(张瑜,戚欣,白艺珍,汪雪芳,喻理,张良晓,李培武. 食品安全质量检测学报),2020,11(20):7181-7188.
Yuan D C. Study on Extraction Process and Physicochemical Properties of Perilla Seed Oil. Harbin:Northeast Forestry University(袁德成. 紫苏籽油提取工艺及理化特性的研究. 哈尔滨:东北林业大学),2019.
Salah W A,Nofal M. J. Sci. Food Agric.,2020,101(3):811-819.
Chen Z,Yun Y H,Ma F,Yu L,Wang X F,Zhang L X,Li P W. J. Food Saf. Food Qual.(陈喆,云永欢,马飞,喻理,汪雪芳,张良晓,李培武. 食品安全质量检测学报),2023,1(9):122-127.
Jie Z W,Zhou S R,Wang J F,Kong Y Q,Li W P,Shao Z S. J. Instrum. Anal. (接昭玮,周世瑞,王继芬,孔艺青,李文凭,邵作山. 分析测试学报),2023,42(2):158-165.
Sun T T,Zhong J J,Liu J B,Ren J L,Zhong H Y,Zhou B. J. Chin. Cereals Oils Assoc.(孙婷婷,钟瑾璟,刘剑波,任佳丽,钟海雁,周波. 中国粮油学报),2022,37(11):245-252.
Tan C H,Kong I,Irfan U,Solihin M I,Pui L P. J. Oleo Sci.,2021,70(10):1343-1356.
Xiao X S,Yang J R,Tang M S,Liu F. China Oils Fats(肖新生,杨交如,唐满生,刘芳. 中国油脂),2018,43(12):134-139.
Rifna E J,Pandiselvam R,Anjineyulu K,Subba Rao K V,Madhuresh D,Manoj K,Rohit T,Ramesh S V. Food Chem.,2022,369:130898.
Nunes C A. Food Res. Int.,2024,60(6):255-261.
Zhao H F,Zhan Y L,Xu Z,Nduwamungu J J,Zhou Y Z,Robert P,Xu C M. Food Chem.,2022,373:131471.
Lee D S,Lee E S,Kim H J,Kim S O,Kim K. Anal. Chim. Acta,2001,429:321-330.
Kim J H,Lee H J,Kwon K,Chun H S,Ahn S,Kim B H. J. Oleo Sci.,2018,67(5):507-513.
Yan B,Sun G X. J. Sep. Sci.,2018,41(6):1182-1191.
Mao R,Wang X,Shi R. J. Instrum. Anal. (毛锐,王欣,史然. 分析测试学报),2017,6(3):372-376.
Qi H W,Xu X,Wu L T,Wen R,Gao D S,Wang C R,Liu Y F,Jin H L,Liang X M. J. Instrum. Anal. (戚华文,徐鑫,吴凌涛,温柔,高德嵩,王超然,刘艳芳,金红利,梁鑫淼. 分析测试学报),2021,40(1):72-78.
Bian X H,Wang Y,Wang S S,Johnson J B,Sun H,Guo Y G,Tan X Y. Foods,2022,11(16):2436.
Bian X H,Zhang R L,Wang J,Liu P,Li G,Tan X Y. Chin. J. Anal. Chem.,2022,50(3):100055.
Ng T T,Li S,Ng C C A,So P K,Wong T F,Li Z Y,Chan S T,Yao Z P. Food Chem.,2018,252:335-342.
Pomerantsev A L,Rodionov O Y. J. Chemom.,2020,34(8):e3250.
Wang H P,Chen P,Dai J W,Liu D,Li Y J,Xu Y P,Chu X L. Trends Anal. Chem.,2022,153:116648.
Bian X H,Zhang C X,Tan X Y,Dymek M,Guo Y G,Lin L,Cheng B,Hu X Y. Anal. Methods,2017,9(20):2983-2989.
Tong A X,Tang X J,Liu H B,Gao H H,Kou X F,Zhang Q. ACS Omega,2023,8(13):12418-12429.
Bian X H,Li S J,Fan M R,Guo Y G,Chang N,Wang J J. Anal. Methods,2016,8(23):4674-4679.