LIU Xian-jun,ZHANG Liang,SUN Hai-feng,ZHANG Zhen,HE Peng,YANG Peng-fei,WU Wei,SHANG Zi-bo.Discrimination of Different Degrees of Mildewed Tobacco Based on HS-GC-IMS Technique[J].Journal of Instrumental Analysis,2024,43(09):1433-1441.
LIU Xian-jun,ZHANG Liang,SUN Hai-feng,ZHANG Zhen,HE Peng,YANG Peng-fei,WU Wei,SHANG Zi-bo.Discrimination of Different Degrees of Mildewed Tobacco Based on HS-GC-IMS Technique[J].Journal of Instrumental Analysis,2024,43(09):1433-1441. DOI: 10.12452/j.fxcsxb.24042901.
Discrimination of Different Degrees of Mildewed Tobacco Based on HS-GC-IMS Technique
To explore the differences of volatile compounds in different degrees of mildewed tobacco and achieve rapid discrimination,headspace-gas chromatography-ion mobility spectrometry(HS-GC-IMS) was employed to analyze the volatile compounds in different mildewed tobacco from Nanxiong,Shaoguan,Guangdong,and a classification model was constructed based on distinctive volatile components which was screened by the chemometric pattern recognition and relative odor activity value(ROAV) analysis. The results revealed discernible patterns of volatile compounds among tobacco with varying mold severity by the HS-GC-IMS differential maps,volatile compound fingerprints,and similarity correlation heatmaps. A total of 50 volatile compounds were qualitatively identified in different leaf samples,including 13 alcohols,6 aldehydes,8 ketones,13 esters,1 acid,1 terpene,and 8 other compounds. Principal component analysis(PCA),hierarchical clustering(HCA),and partial least squares discriminant analysis(PLS-DA) effectively differentiated tobacco samples with different mold severity. 20 distinct volatile compounds were screened out based on variable importance projection(VIP) values greater than 1. Furthermore,17 differential volatile compounds were chosed,using ROAV analysis,to construct a support vector machine(SVM) classification model,achieving a 100% classification rate. The method effectively discriminated tobacco with varying mold severity,providing technical and data support for moldew identification and prediction.
关键词
烟叶霉变顶空-气相色谱-离子迁移谱挥发性化合物化学模式识别相对气味活度值
Keywords
tobaccomildewheadspace-gas chromatography-ion mobility spectrometryvolatile compoundschemometric pattern recognitionrelative odor activity value
references
Wang L,Wang Y D,Zhu B,Li H,Zhou H S,Wang K Y,Yan T J,Zhou P,Xia H,Zhou M. J. Henan Agric. Sci.(王林,王宇栋,朱宝,李虎,周红审,王凯悦,闫铁军,周平,夏海,周敏. 河南农业科学),2023,52(3):101-108.
Yang L. Effect of Environmental Factors on Quality of Tobacco Leaves and Prediction Method of Mildew. Kunming:Kunming University of Science and Technology(杨蕾. 环境对烟叶品质的影响分析及霉变预测方法研究. 昆明:昆明理工大学),2016.
YC/T 475-2013. Tobacco and Tobacco Products-Molding Control Guide. Tobacco Industry Standard of the People's Republic of China(烟草及烟草制品 霉变控制指南. 中华人民共和国烟草行业标准).
Zhou J Y,Yang P P,Liu L,Yin X D,Hou Y,Yang S H. Acta Tab. Sin.(周继月,杨盼盼,刘磊,尹晓东,侯英,杨式华. 中国烟草学报),2018,24(1):6-13.
Mo Z,Yang L L,Zhou P,Huang G L,Xu Y,Wang Y J,Zhou P,Li M. Anhui Agric. Sci.(莫峥,杨丽莉,周鹏,黄纲临,徐勇,王勇军,周萍,李萌. 安徽农业科学),2023,51(3):188-191.
Jin Q,Sun X F,Tang W,Hu Y X,Luo L,Lu F,Liao H Y. J. Instrum. Anal.(金强,孙学锋,唐伟,胡玉轩,罗亮,陆飞,廖惠云. 分析测试学报),2024,43(4):574-581.
Yuan J J,Li H B,Cao S Q,Liu Z B,Li N,Xu D,Mo H Z,Hu L B. Foods,2023,12(24):4394.
Yin J X,Wu M F,Lin R M,Li X,Ding H,Han L F,Yang W Z,Song X B,Li W L,Qu H B,Yu H S,Li Z. Microchem. J.,2021,168:106527.
Li Q L,Li R Q,Cao G,Wu X,Yang G M,Cai B C,Cheng B,Mao W M. J. Sep. Sci.,2015,38(18):3205-3208.
Sun X,Gu D Y,Fu Q B,Gao L,Shi C,Zhang R T,Qiao X G. Food Sci. Nutr.,2019,7(4):1387-1395.
Fang C F,He J,Xiao Q,Chen B L,Zhang W T. Molecules,2022,27(14):4537.
Wang Y,Fan J L,Zhang M M,Ji W H,Wang X,Li L L. J. Instrum. Anal.(王燕,范佳丽,张敏敏,纪文华,王晓,李丽丽. 分析测试学报),2023,42(8):976-983.
Steppert C,Steppert I,Sterlacci W,Bollinger T. J. Breath Res.,2021,15(2):027105.
Akira T,Alfian W,Jiten K,Ramesh P. Biosensors(Basel),2019,9(2):55.
Li J Q,Luo C D,Ren E F,Huang Y T,Feng C M,Luo X J,Wei Y,Li W M. J. Southern Agric.(李建强,罗朝丹,任二芳,黄燕婷,冯春梅,罗小杰,韦勇,李文墨. 南方农业学报),2023,54(2):376-386.
Chen T,Chen X Y,Lu D L,Chen B. Int. J. Anal. Chem.,2018,2018:3160265.
Wu Q X,Li Z H,Wang D,Sun T Q,Du Z X,Zou J X. J. Instrum. Anal.(吴秋香,李志豪,王迪,孙堂强,杜振霞,邹积鑫. 分析测试学报),2022,41(11):1652-1657.
Luong J,Gras R,Van M R,Sutherland F,Cortes H. J. Chromatogr. Sci.,2006,44(5):276-286.
Sorribes-Soriano A,Herrero-Martínez J M,Esteve-Turrillas F A,Armenta S. J. Chromatogr. A,2020,1633:461629.
Wang Y,He Y H,Liu Y,Wang D W. Foods,2022,12(1):59.
Pan M,Li J,Liu H,Chen Z F,Tian Q F,Long J,Long Q,Yang P,Liu X H. J. Food Saf. Qual.(潘牧,李俊,刘辉,陈宗飞,田钱丰,龙锦,龙泉,杨鹏,刘晓辉. 食品安全质量检测学报),2023,14(23):214-226.
Zhang S,Wu S J,Lin B M,Li H M,Wu M H,Dai Y M. China Fruits(张帅,吴水金,林宝妹,李海明,吴妙鸿,戴艺民. 中国果树),2023,(11):61-69,80.
Li D K,Tian N,Tian Z Z,Wu R X,Ma L C,Xing L X,Zhang C T. J. Instrum. Anal.(李登科,田楠,田志章,吴若昕,马立超,邢立霞,张春涛. 分析测试学报),2021,40(8):1164-1170.
Zhang L H,Ma J Z,Le G Q,Dai X C. J. East Chin. Jiaotong Univ.(张利华,马钧钊,勒国庆,戴熙昌.华东交通大学学报),2013,30(3):71-75.
Xu X G,Li H J,Tian Z W. Chin. Tob. Sci.(徐晓光,李红娟,田振伟. 中国烟草科学),2015,36(4):102-105.
Lai Y H,Lin Y,Tao H,Wang Y. Acta Tab. Sin.(赖燕华,林云,陶红,王予. 中国烟草学报),2020,26(2):36-43.
Yao S S,Zeng X L,Wang H,Sun P,Wang X W,Zhao J T,Zhang X J. Biol. Disaster Sci.(姚珊珊,曾宪立,王辉,孙鹏,王新伟,晁江涛,张学杰. 生物灾害科学),2022,45(4):456-462.
Huang T,Lei Q,Yu S K,He Z X,Zhang Q L,Xie L W,Mu M X,Jing Y Q. J. Henan Agric. Sci.(黄涛,雷强,俞世康,何佶弦,张启莉,谢良文,母明新,景延秋. 河南农业科学),2022,51(2):169-180.
Hao J,Jiang C Y,Chai Y,Wang X S,Jiang P F. J. Light Ind.(郝捷,江彩艳,柴颖,王煦松,姜鹏飞. 轻工学报),2023,38(2):87-93,117.
Li M Q,Yang R W,Zang H,Wang S L,Chen D,Lin S Y. Food Chem.,2019,290:32-39.
Zhao L,Wang S L,Zhao X,Wang Y H,Hou B Q,Jin Y X,Wang J,Shi X D. J. Light Ind.(赵亮,王硕立,赵曦,王以慧,侯冰清,金一骁,王骏,时向东. 轻工学报),2024,39(1):79-86.
Wang Z L,Yuan Y X,Hong B,Zhao X,Gu Z Y. Molecules,2021,26(23):7113.
Wang X Y,Xu W Y,Chen T Q,Li Y,Zhang H L. J. Food Saf. Qual.(汪修意,徐文泱,陈同强,李勇,张红莉. 食品安全质量检测学报),2019,10(24):8450-8455.
Shi Q Z,Li H L,Wang C,Fan W,Zhang Q D,Chai G B,Mao J,Xu X J,Xi H,Ji L B,Liu J H,Song Y B,Ma S T,Pan G W. Tob. Sci. Technol.(史清照,李河霖,王超,范武,张启东,柴国璧,毛健,徐秀娟,席辉,姬凌波,刘俊辉,宋瑜冰,马胜涛,潘高伟. 烟草科技),2023,56(5):56-67.
Yu X L,Liu J,Wang D A,Ni D J,Yuan Y B,Li Z H,Liu S G,Chen N,Tao D X,Han Z B,Zhou S Z. South-Central Agric. Sci. Technol.(虞昕磊,刘俊,王大爱,倪德江,袁跃斌,李志豪,刘圣高,陈霓,陶德欣,韩智彪,周绍桢. 中南农业科技),2024,45(1):47-55.
Tao L Y,Zhang Y W,Li Y Q,Luo L P,Zhang Z L,Chen J. Chin. J. Biotechnol.(陶玲芸,张怡雯,李雅乾,罗来鹏,张曾鲁,陈捷. 生物工程学报),2020,36(6):1181-1189.
Ozer U G E,Uyar B. Food Sci. Nutr.,2023,11(10):5908-5917.
Carmen K,Letizia A,Antoine D,Bastien L,Sébastien P,Christian G. Sci. Total Environ.,2020,741:140148.
Model Update of Total Sugar Content in Tobacco Leaves of Different Years by Near-infrared Spectroscopy Combined with Parameter-free Calibration Enhancement
Grade Determination of Flue-cured Tobacco by Near Infrared Spectroscopy Combined with Teaching-learning-based Optimization Algorithm Optimized Extreme Learning Machine
Analysis of Main Odor Substances in Recycled Polyethylene by HS-SPME/GC-MS with Relative Odor Activity Value
Scientific PapersEffect of Number of Latent Variables for Partial Least Square Model Based on Near Infrared Spectroscopy on Models Transfer Performance