PAN Yi-xia,ZHANG Hong-xu,YAN Ji-zhong,ZHANG Hui.Source Identification of Radix Glycyrrhizae(Licorice) Based on the Fusion of Hyperspectral and Texture Feature[J].Journal of Instrumental Analysis,2024,43(11):1745-1753.
PAN Yi-xia,ZHANG Hong-xu,YAN Ji-zhong,ZHANG Hui.Source Identification of Radix Glycyrrhizae(Licorice) Based on the Fusion of Hyperspectral and Texture Feature[J].Journal of Instrumental Analysis,2024,43(11):1745-1753. DOI: 10.12452/j.fxcsxb.24042504.
Source Identification of Radix Glycyrrhizae(Licorice) Based on the Fusion of Hyperspectral and Texture Feature
The identification of different sources of licorice is of great significance for ensuring its clinical application. Based on the spectral features of 89 licorice medicinal materials from three sources,including
Glycyrrhiza uralensis
Fisch.,
Glycyrrhiza inflata
Bat.,and
Glycyrrhiza glabra
L.,11 texture feature parameters(short run emphasis,long run emphasis,gray-level non-uniformity,run-length non-uniformity,run percentage,low gray-level run emphasis,high gray-level run emphasis,short run low gray-level emphasis,short run high gray-level emphasis,long run low gray-level emphasis,long run high gray-level emphasis) were extracted using the gray-level run-length matrix from four perspectives(0°,45°,90°,and 135°). Through an innovative feature selection method-normalized average discrepancy method,texture features with significant contributions were selected and fused with spectral features to improve the accuracy of source identification. Compared to traditional feature selection methods such as SelectKBest(SKB),recursive feature elimination(RFE),and SelectFromModel(SFM),the normalized average discrepancy method demonstrated higher applicability in the dataset of this study,with a source identification accuracy
of 95.28% on the test set using support vector machine(SVM) classifier,higher than the unselected(92.22%),SKB-selected(95.00%),RFE-selected(95.00%),and SFM-selected(93.89%) accuracies. The data mining method proposed in this study fully utilizes the hyperspectral data and image data,integrating spectral features and texture features,providing a new non-destructive analytical techniques for the source identification of licorice medicinal materials.
The State Pharmacopoeia Commission of the People's Republic of China. Pharmacopoeia of the People’s Republic of China.Volume I. Beijing:China Medical Science and Technology Press(国家药典编委会. 中华人民共和国药典. 2020年版 一部. 北京:中国医药科技出版社),2020:88.
Yu Z B,Dong S H,Zhang J W,Li D Y,Liu Y,Li H,Du S S. J. Ethnopharmacol.,2022,298:115613.
Ding Y M,Brand E,Wang W Q,Zhao Z Z. J. Ethnopharmacol.,2022,298:115594.
Sun P P,Yu P,Ge S Y. Chin. J. Rural Med. Pharm.(孙萍萍,余平,葛淑瑜. 中国乡村医药),2023,30(20):23-25.
Liu J. Inn. Mong. J. Tradit. Chin. Med.(刘杰. 内蒙古中医药),2024,43(3):146-147.
Han K,Wang M,Zhang L,Wang C Y. Molecules,2018,23(10):2728.
Li Y Q,Kong D X,Wu H. Rev. Bras. Farmacogn.,2018,28(5):533-541.
Zhang H,Xu C,Tian Q H,Zhang Y,Zhang G M,Guan Y X,Tong S Q,Yan J Z. J. Ethnopharmacol.,2021,264:113282.
Zhang H,Wang J N,Chen Y,Shen X W,Jiang H J,Gong X C,Yan J Z. J. Sep. Sci.,2019,42(6):1117-1298.
Bian X H,Lu Z K,van Kollenburg G. Anal. Methods,2020,12(17):3499-3507.
Zhen Z F. J. Sichuan Tradit. Chin. Med.(甄中锋. 四川中医),2018,36(12):178-180.
Liu Y C,Li Z,Ma L D,Guo H Z,Chen Y G,Fu X T,Wang W Q. Chin. Pharm. J.(刘育辰,李铮,马丽端,郭洪祝,陈有根,傅欣彤,王文全.中国药学杂志),2011,46(14):1112-1116.
Li T,Qiao Z X,Li M,Zhou N,Ren G X,Jiang D,Liu C S. Int. J. Food Prop.,2023,26(1):197-207.
Zhang H,Gao S H. J. Instrum. Anal.(张浩,高树辉. 分析测试学报),2023,42(7):817-824.
Ma L,Ma Q,Li Y J,Zhang Y Y,Wang J,Ma S Y,Ma Y,Du M H,Wu L G. J. Instrum. Anal.(马玲,马倩,李亚娇,张祎洋,王静,马思艳,马燕,杜明华,吴龙国. 分析测试学报),2023,42(2):210-215.
Pan Y X,Zhang H X,Chen Y,Gong X C,Yan J Z,Zhang H. Crit. Rev. Anal. Chem.,2023. https://doi.org/10.1080/10408347.2023.2207652https://doi.org/10.1080/10408347.2023.2207652.
Yin W J,Ru C L,Zheng J,Zhang L,Yan J Z,Zhang H. China J. Chin. Mater. Med.(殷文俊,茹晨雷,郑洁,张璐,颜继忠,张慧. 中国中药杂志),2021,46(4):923-930.
Zhang H,Pan Y X,Chen Y,Zhang H X,Xie J H,Gong X C,Zhu J Q,Yan J Z. Analyst,2024,149:1837-1848.
Zhao X X,Ruan J J,Li J,Dai C X,Pei M C,Zhou Y. Magn. Reson. Imaging,2024,110:7-16.
Guyon I,Elisseeff A. J. Mach. Learn. Res.,2003,3:1157-1182.
Krupinova J A,Elfimova A R,Rebrova O Y,Voronkova I A,Eremkina A K,Kovaleva E V,Maganeva I S,Gorbacheva A M,Bibik E E,Deviatkin A A,Melnichenko G A,Mokrysheva N G. J. Pathol. Inf.,2022,13:100134.
1.4.2 Scikit-Learn(2024). 1.13.4 Feature Selection Using SelectFromModel. [2024-5-20]. https://scikit-learn.org/stable/modules/feature_selection.html#feature-selection-using-selectfrommodelhttps://scikit-learn.org/stable/modules/feature_selection.html#feature-selection-using-selectfrommodel.
Belhumeur P N,Hespanha J P,Kriegman D J. IEEE Trans. Pattern Anal. Mach. Intell.,1997,19(7):711-720.
Sun J L,Liu P,Zhai H W. J. Hebei Acad. Sci.(孙洁丽,刘沛,翟浩文. 河北省科学院学报),2022,39(5):1-6.
Vapnik V N,Lerner A Y. Avtom. Telemekh.,1963,24(6):774-780.
Ozaki Y. Anal. Sci.,2021,37(9):1193-1212.
Tomar M,Bhardwaj R,Kumar M,Sumer P S,Krishnan V,Kansal R,Verma R,Yadav V K,Dahuja A,Ahlawat S P,Rana J C,Satyavathi C T,Praveen S,Sachdev A. LWT-Food Sci. Technol.,2021,149:111813.
Research on Rapid Prediction of Microbial Limit of Intermediates in Traditional Chinese Medicine Formulations Based on Machine Learning
Recent Advances in the Application of Machine Learning in Environmental Analysis and Detection
Related Author
WANG Hai-xia
LI Zheng
LIU Yi-dan
LI Zhi-yao
ZHAO Yu-wen
ZHAO Yu-wen
ZHANG Bo
LIU Si-si
Related Institution
Haihe Laboratory of Modern Chinese Medicine
State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process,Control and Intelligent Manufacture,Jiangsu Kanion Pharmaceutical Co.,Ltd
Tianjin Key Laboratory of Intelligent and Green Pharmaceuticals for Traditional Chinese Medicine
College of Pharmaceutical Engineering of Traditional Chinese Medicine,Tianjin University of Traditional Chinese Medicine
State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process;Control and Intelligent Manufacture,Jiangsu Kanion Pharmaceutical Co.,Ltd