ZHOU Wan-cheng,KONG Shuai,LIU Li-qiang,SUN Bin-han,ZHANG Xian-cheng,TU Shan-tung.In-situ Materials Mechanical Testing System under High-temperature Hydrogen Environment and Its Application[J].Journal of Instrumental Analysis,2024,43(09):1324-1330.
ZHOU Wan-cheng,KONG Shuai,LIU Li-qiang,SUN Bin-han,ZHANG Xian-cheng,TU Shan-tung.In-situ Materials Mechanical Testing System under High-temperature Hydrogen Environment and Its Application[J].Journal of Instrumental Analysis,2024,43(09):1324-1330. DOI: 10.12452/j.fxcsxb.24042405.
In-situ Materials Mechanical Testing System under High-temperature Hydrogen Environment and Its Application
Metallic materials can experience early damage formation and even catastrophic failure when subjected to loading under high-temperature hydrogen environment. The corresponding mechanical properties are,however,not widely reported due to the difficulty of performing environmental mechanical testing. Here an in-situ material mechanical testing system is designed to address this issue. This system is capable of performing tensile tests under either pure hydrogen or hydrogen mixed environment at temperatures up to 600 ℃ and pressures up to 2 MPa. The facility features a hydrogen environment chamber equipped with vacuum,gas purging and heating systems. Deformation can be measured accurately by using a linear variable displacement transducer(LVDT) in combination with accurate sensors. The facility was utilized to assess the tensile performance of a GH4169 superalloy under various temperatures(25,200,400 and 600 ℃) in both pure gaseous hydrogen and pure gaseous Ar environment. The findings highlight a significant embrittlement effect of the hydrogen environment on the material,reflected by the reduced elongation and reduction of area in compassion to the corresponding values under Ar. Analysis is further conducted using scanning electron microscopy(SEM) to investigate the fracture modes and hydrogen-induced damage mechanisms of the alloy tested under 25 and 200 ℃. It is concluded that hydrogen-induced damage in GH4169 is more severe at 200 ℃ when compared with 25 ℃. This increased hydrogen sensitivity is primarily due to the accelerated diffusion of hydrogen atoms at high temperature,which leads to a faster hydrogen accumulation at grain boundaries and thereby a facile hydrogen-induced intergranular fracture.
Jiang H D,Ren J,Li X Y. Proc. CSEE(蒋洪德,任静,李雪英. 中国电机工程学报),2014,34(29):5096-5102.
Lee J A. Hydrogen Embrittlement. Alabama:Marshall Space Flight Center,2016:1-43.
Gangloff R P. Gaseous hydrogen Embrittlement of Materials in Energy Technologies. Volume 1. Cambridge:Woodhead Publishing Limited,2012:51-93,624-701.
Zhang B L,Zhu Q S,Xu C,Li C T,Ma Y,Liu S N,Shao R W,Xu Y T,Jiang B L,Gao L,Pang X L,He Y,Chen G,Qiao L J. Nat. Commun.,2022,13(1):3858.
Wasim M,Djukic M B. Int. J. Hydrogen. Energy,2020,45(3):2145-2156.
Li X F,Ma X F,Zhang J,Akiyama E,Wang Y F,Song X L. Acta Metall. Sin.-engl.,2020,33:759-773.
Tarzimoghadam Z,Rohwerder M,Merzlikin S V,Bashir A,Yedra L,Eswara S,Ponge D,Raabe D. Acta Mater.,2016,109:69-81.
Gong P,Turk A,Nutter J,Yu F,Wynne B,Rivera-Diaz-del-Castillo P,Rainforth W M. Acta Mater.,2022,223:117488.
Wang L W,Liang J M,Li H,Cheng L J,Cui Z Y. Corros. Sci.,2021,178:109076.
Nomura S,Hasegawa M. Corros. Eng.(野村茂雄,長谷川正義. 防食技術),1976,25(6):377-384.
Eliezer D. J. Mater. Sci.,1981,16:2962-2966.
Vitovec F H. Can. Metall. Quart.,1984,23(1):59-62.
Chiba R,Qhnishi K,Ishii K,Maeda K. Tetsu-to-Hagané (千葉隆一,大西敬三,石井邦雄,前田啓吉. 鉄と鋼),1976,25(6):377-384.
Honma Y,Kayano R. J. Jpn. Weld. Soc.(本間祐太,茅野林造. 溶接学会誌),2016,85(6):575-580.
Martin M L,Dadfarnia M,Orwig S,Moore D,Sofronis P. Acta Mater.,2017,140:300-304.
Tan J Z. Petrochem. Equip. Technol. (谈金祝. 石油化工设备技术),2001,(3):53-55,1.
McCoy H E. Effects of Hydrogen on the High- temperature Flow and Fracture Characteristics of Metals. Tennessee:Oak Ridge National Laboratory,1964:1-221.
Yokogawa K,Fukuyama S,Mitsui M,Kudo K. Rev. Sci. Instrum.,1978,49(1):50-51.
Yokogawa K,Fukuyama S,Kudo K. Rev. Sci. Instrum.,1982,53(1):86-89.
API-RP 941. Steels for Hydrogen Service at Elevated Temperatures and Pressures in Petroleum Refineries and Petrochemical Plants. American Petroleum Institute.
Deluca D P. Mechanical Properties of Turbine Blade Alloys in Hydrogen at Elevated Temperatures. Florida:United Technologies Pratt & Whitney Aircraft,1981:1-107.
Yoshida M. Test Apparatus and Tensile Properties of LE-7 Turbine Blade Materials in High Pressure Hydrogen Conditions. Tokyo:National Aerospace Laboratory,1991:1-19.
Balitskii A,Ivaskevich L,Mochulskyi V,Eliasz J,Skolozdra O. Arch. Mech. Eng.,2014,61:129-138.
Zhou C L. Research on Material Mechanics Properties Testing Equipment in 140 MPa High-pressure Hydrogen Environment. Hangzhou:Zhejiang University(周池楼. 140 MPa高压氢气环境材料力学性能测试装置研究. 杭州:浙江大学),2016.
Chen X D,Liu X L,Wang B. China Patent(陈学东,刘孝亮,王冰. 中国专利),CN104897476B. [2018-03-02].
Liu X L,Wang B,Fan Z C,Zhuang Q W,Fan H. Eng. Test(刘孝亮,王冰,范志超,庄庆伟,范辉. 工程与试验),2016,56(1):1-6,14.
ASTM G142-98. Standard Test Method for Determination of Susceptibility of Metals to Embrittlement in Hydrogen Containing Environments at High Pressure,High Temperature,or Both. ASTM International.
Xu L,Lei X S. Machinery(许磊,雷旭升. 机械制造),2021,50(5):32-34.
Ogawa Y,Takakuwa O,Okazaki S,Okita K,Funakoshi Y,Matsunaga H,Matuoka S. Corros. Sci.,2019,161:108186.
Determination of Oxygen and Nitrogen Elements in Nickel-based Superalloys by Glow Discharge Mass Spectrometry
Calibrated Relative Sensitivity Factors for Elemental Quantitative Analysis of Trace Rare Earth & Precious Metal Elements in Nickel Base Superalloy by Glow Discharge Mass Spectrometry with Fast-flow Ion Source
Related Author
ZHANG Zhong-yuan
LI Xiao-xu
WANG Chang-chun
LI Hui
WANG Hai-zhou
YANG Guo-wu
HU Jing-yu
ZHANG Xin-yuan
Related Institution
Institute of Metal Research,Chinese Academy of Sciences