HAN Ming-xue,ZHANG Xu-nan,ZONG Wei.Nickel Extraction from Industrial Wastewater Based on PEG-Sodium Sulfate Aqueous Two-phase System[J].Journal of Instrumental Analysis,2024,43(09):1425-1432.
HAN Ming-xue,ZHANG Xu-nan,ZONG Wei.Nickel Extraction from Industrial Wastewater Based on PEG-Sodium Sulfate Aqueous Two-phase System[J].Journal of Instrumental Analysis,2024,43(09):1425-1432. DOI: 10.12452/j.fxcsxb.24040903.
Nickel Extraction from Industrial Wastewater Based on PEG-Sodium Sulfate Aqueous Two-phase System
Nickel is a toxic metal element that causes sensitization and is classified as a human carcinogen. Improper handling of nickel can make it a major source of water and soil pollution. The recovery of nickel ions from wastewater containing nickel is considered to be one of the effective ways to reduce pollution and solve the shortage of nickel resources. However,the problem of efficient and selective separation of nickel from complex environments has not been fully solved. In this paper,polyethylene glycol(PEG) and sodium sulfate were used to construct a two-phase aqueous system(ATPS) to selectively extract and separate nickel from wastewater. The types and concentration of nickel extractant,pH value of salt solution,temperature and co-existing metal ions were further optimized. The results showed that:At 35 ℃,the sodium alginate(SA) concentration is 0.1 g/L,more than 80% of nickel ions are efficiently and accurately separated from pH 2.0 salt solutions. The interference of multiple co-existing ions is avoided. Therefore,this work provides theoretical guidance for the treatment and reuse of nickel ions in wastewater,and the research content of hydrogel ligand-two-phase aqueous extraction system in green production technology was enriched.
Schaumlöffel D. J. Trace Elem. Med. Biol.,2012,26(1):1-6.
Karmakar R,Sen K. J. Mol. Liq.,2019,273:231-247.
Shi M,Feng J M,Lu Y C. J. Instrum. Anal.(石美,冯加民,陆永超. 分析测试学报),2010,29(11):1159-1164.
Vargas S J R,Schaeffer N,Souza J C,Silva L H M D,Hespanhol M C. Waste Manage.,2021,125:154-162.
Huang Y,Chen D,Kong L J,Su M,Chen Y. Sep. Purif. Technol.,2020,235:115740.
Patrício P D R,Mesquita M C,Silva L H M D,Silva M C H D. J. Hazard. Mater.,2011,193:311-318.
Liu Z,Ma D Y,Mo R X. J. Instrum. Anal. (刘钊,马德运,莫瑞欣. 分析测试学报),2018,37(5):630-634. .
Sun P,Huang K,Lin J Y,Liu H Z. Ind. Eng. Chem. Res.,2018,57(33):11390-11398.
Iqbal M,Tao Y F,Xie S Y,Zhu Y F,Chen D M,Wang X,Huang L L,Peng D P,Sattar A,Shabbir M A B,Hussain H I,Ahmed S,Yuan Z H. Biol. Proced. Online,2016,18:18.
Teixeira A G,Agarwal R,Ko K R,Grant-Burt J,Leung B M,Frampton J P. Adv. Health. Mater.,2017,7(6):1701036.
Raghavarao K S M S,Ranganathan T V,Srinivas N D,Barhate R S. Clean Technol. Environ. Policy,2003,5(2):136-141.
Raja S,Murty V R,Thivaharan V,Rajasekar V,Ramesh V. Sci. Technol.,2012,1(1):7-16.
Titus A R,Madeira P P,Ferreira L A,Chernyak V Y,Uversky V N,Zaslavsky B Y. Int. J. Mol. Sci.,2022,23(22):14366.
Shahrokhi B,Pirdashti M,Arzideh S M. J. Dispersion Sci. Technol.,2021,43(11):1603-1611.
Milevskiy N A,Boryagina I V,Karpukhina E A,Kuznetsov V N,Kabanova E G. J. Chem. Eng.,2021,66(2):1021-1031.
Wu X,Liu Y,Zhao Y,Cheong K L. J. Chem. Eng.,2018,63(9):3297-3304.
Silvério S C,Rodríguez O,Teixeira J A,Macedo E A. J. Chem. Eng.,2013,58(12):3528-3535.
Pirdashti M,Heidari Z,Abbasi Fashami N,Arzideh S M,Khoiroh I. J. Chem. Eng.,2021,66(3):1425-1434.
Wysoczanska K,Macedo E A. J. Chem. Eng. Data,2016,61(12):4229-4235.
Pirdashti M,Heidari Z,Fashami N A,Arzideh S M,Khoiroh I. J. Chem. Eng. Data,2021,66(3):1425-1434.
Huang Y,Liu Y X,Ruan Y,Gong J,Kong L G,Su M H,Han W X,Yang M L,Chen D Y. J. Mol. Liq.,2023,384:122223.
Leite D D S,Assis R C D,Domingues J T,Carvalho P L G,Castro M C M D,Cruz G H D,Silva I C G,Rodrigues G D. J. Water Process Eng.,2021,42:102138.
Bulgariu L,Bulgariu D. J. Chromatogr. A,2008,1196:117-124.
Amaral Y M S,Silva O S D,Oliveira R L D,Porto T S. Prep. Biochem. Biotechnol.,2020,50(6):619-626.
Cai C Q,Fajar A T N,Hanada T,Wakabayashi R,Goto M. ACS Omega,2023,8(3):3198-3206.
Yao T,Li Q,Tan M,Shi X D. J. Cleaner Prod.,2021,328:129648.
Fu Y C,Yang Z,Li Y S. J. Instrum. Anal.(付宇超,杨珍,李吟霜. 分析测试学报),2022,41(7):1078-1083.
Kummerer K. J. Antimicrob. Chemother.,2003,52(1):5-7.
Law L H,Huang J P,Xiao P,Liu Y,Chen Z L,Lai J H C,Han X Q,Cheng G W Y,Tse K H,Chan K W Y. Control Release,2023,354:208-220.
Mokarizadeh M,Nemati-Kande E,Azizi Adeh R T. Chem. Eng. Data,2021,66(5):2050-2060.
Pereira J F B,Coutinho J A P. Liq.-Phase Extr.,2020,5:157-182.
Amjad R S,Asadollahzadeh M,Torkaman R,Torab-Mostaedi M. Sci. Rep.,2022,12(1):17302.
Landaburu-Aguirre J,Pongrácz E,Sarpola A,Keiski R L. Sep. Purif. Technol.,2012,88:130-137.
Dermentzis K. J. Hazard. Mater.,2010,173:647-652.
Rudnik E,Nikiel M. Hydrometallurgy,2007,89:61-71.
Idris J,Musa M,Yin C Y,Hamid K H K. J. Ind. Eng. Chem.,2010,16:251-255.
Ghaedi M,Ahmadi F,Shokrollahi A. J. Hazard. Mater.,2007,142(1):272-278.
Lacerda V. J. Power Sources,2009,193(2):908-913.
Bahram M,Khezri S,Khezri S. Curr. Chem. Lett.,2013,2(1):49-56.
Determination of Cr(Ⅲ) and Ultratrace Cr(Ⅵ) in Toy Materials by Co-precipitation Assisted Separation-Ion Chromatography-Inductively Coupled Plasma Mass Spectrometry
Determination of Polycyclic Aromatic Hydrocarbons in Environmental Water and Soil Samples by Magnetic Microporous Polymer Enrichment Coupled with Surface-enhanced Raman Spectroscopy
Determination of Formaldehyde and Acetaldehyde in Cigarette Capsules by High Performance Liquid Chromatography
Progress of Electrical Field assisted Sample Pretreatment Techniques