浏览全部资源
扫码关注微信
1.广州大学 化学化工学院,广东 广州 510006
2.中山大学 化学工程与技术学院,广东 珠海 519082
RONG Ming-cong,Ph.D.,Associate professor,Research interests:visual fluorescent sensing,E-mail:rongmc@gzhu.edu.cn
NIU Li,Ph.D.,Professor,Research interests:materials electrochemistry,photoelectrochemical sensing,flexible materials and devices,analytical instruments,E-mail:niuli@mail.sysu.edu.cn,lniu@gzhu.edu.cn
收稿日期:2025-06-11,
修回日期:2025-07-13,
纸质出版日期:2025-09-15
移动端阅览
黄薇,钟双羽,李畅,林春晓,荣铭聪,牛利.基于MXenes量子点的钙离子、锰离子比率荧光检测方法[J].分析测试学报,2025,44(09):1889-1899.
HUANG Wei,ZHONG Shuang-yu,LI Chang,LIN Chun-xiao,RONG Ming-cong,NIU Li.Ratiometric Fluorescence Detection Method for Calcium Ions and Manganese Ions Based on MXenes Quantum Dots[J].Journal of Instrumental Analysis,2025,44(09):1889-1899.
黄薇,钟双羽,李畅,林春晓,荣铭聪,牛利.基于MXenes量子点的钙离子、锰离子比率荧光检测方法[J].分析测试学报,2025,44(09):1889-1899. DOI: 10.12452/j.fxcsxb.25061101.
HUANG Wei,ZHONG Shuang-yu,LI Chang,LIN Chun-xiao,RONG Ming-cong,NIU Li.Ratiometric Fluorescence Detection Method for Calcium Ions and Manganese Ions Based on MXenes Quantum Dots[J].Journal of Instrumental Analysis,2025,44(09):1889-1899. DOI: 10.12452/j.fxcsxb.25061101.
钙(Ca
2+
)和锰(Mn
2+
)离子是维持生命活动的必需元素,也是生活饮用水中的重要监控指标,开发高灵敏、高选择性、便携式Ca
2+
和Mn
2+
的检测方法对水质监测和人体健康具有重要意义。该文以Ti
3
C
2
MXene为前驱体制备蓝色荧光Ti
3
C
2
MXene基量子点(MQDs,
λ
em
= 445 nm),通过乙二胺四乙酸(EDTA)的螯合作用,构建蓝色、红色双发射荧光探针MQDs-EDTA-Eu
3+
-DPA。其中,2,6-吡啶二甲酸(DPA)作为吸光配体可通过“天线效应”显著增强Eu
3+
在616 nm处的红色荧光。MQDs的蓝色荧光作为内参比信号,高浓度Ca
2+
可猝灭Eu
3+
-DPA的红色荧光;Mn
2+
与DPA配位后可激发Mn
2+
在380 nm处的紫色荧光,此时以Eu
3+
-DPA的红色荧光作为内参比信号。基于上述两种荧光强度变化,分别建立了对Ca
2+
与Mn
2+
的比率荧光检测法。
I
F616
/
I
F445
与Ca
2+
在35~120 μmol/L呈线性关系,检出限为5.98 μmol/L;
I
F380
/
I
F616
与Mn
2+
在0~14 μmol/L线性良好,检出限为28.6 nmol/L。该方法成功应用于市售矿泉水(农夫山泉、百岁山和恒大冰泉)中Ca
2+
和Mn
2+
的定量分析,加标回收率为80.6%~117%,相对标准偏差(RSD)为0.76%~4.6%。此外,通过制备MQDs基荧光试纸,实现了Ca
2+
和Mn
2+
的可视化检测。该工作表明MQDs在水中离子的可视化荧光传感领域具备应用潜力。
Calcium ions(Ca
2+
) and manganese ions(Mn
2+
) are essential for sustain
ing life activities and are key monitoring indicators in drinking water. Developing highly sensitive,selective,and portable detection methods for Ca
2+
and Mn
2+
is significant for water quality monitoring and human health. In this paper,blue fluorescent Ti
3
C
2
MXene-based quantum dots(MQDs,
λ
em
=445 nm) are prepared using Ti
3
C
2
MXene as the precursor. Through the chelation effect of ethylene diamine tetraacetic acid(EDTA),a blue and red dual-emission fluorescent probe,MQDs-EDTA-Eu
3+
-DPA,was constructed. Herein,dipicolinic acid(DPA) acts as an absorbing ligand and significantly enhances the red fluorescence of europium ions(Eu
3+
) at 616 nm through the “antenna effect”. The blue fluorescence of MQDs serves as an internal reference signal. High concentrations of Ca
2+
can quench the red fluorescence of Eu
3+
-DPA;Mn
2+
can be excited to emit purple fluorescence at 380 nm after coordinating with DPA,red fluorescence of Eu
3+
-DPA serves as the internal reference signal. Based on the above two fluorescence intensity changes,ratiometric fluorescence detection methods for Ca
2+
and Mn
2+
are established. The fluorescence intensity ratio(
I
F616
/
I
F445
) exhibits a linear relationship with Ca
2+
in the range of 35-120 μmol/L,with a detection limit of 5.98 μmol/L. The fluorescence intensity ratio(
I
F380
/
I
F616
) shows good linearity with Mn
2+
in the range of 0-14 μmol/L,with a detection limit of 28.6 nmol/L. This method was successfully applied to the quantitative analysis of Ca
2+
and Mn
2+
in commercially available mineral water(Nongfu Spring,Ganten,and Evergrande),with recovery rates of 80.6%-117% and relative standard deviations(RSD) of 0.76%-4.6%. Additionally,by preparing MQD-based fluorescent test strips,
visual detections of Ca
2+
and Mn
2+
are achieved. This work demonstrates the application potential of MQDs in the field of visual fluorescence sensing of ions in water quality.
Yue J , Li L , Cao L , Zan M H , Yang D , Wang Z , Chang Z M , Mei Q , Miao P , Dong W F . ACS Appl. Mater. Interfaces , 2019 , 11 : 44566 - 44572 .
Nguyen D , Behrens D M , Sen S , Najdahmadi A , Pham J N , Speciale G , Lawrence M M , Majumdar S , Weiss G A , Botvinick E L . Anal. Chem. , 2020 , 92 : 7683 - 7689 .
Dey N . J. Mater. Chem. B , 2023 , 11 : 1222 .
Wang Z N , Xiong Z P , Liu W D , Zhu Q Z , Zhang X X , Ding Y Q , Huang C Y , Feng H , Zhang K W , Zhu E G , Qian Z S . Anal. Chem. , 2022 , 94 : 5406 - 5414 .
Cheng R M , Li Z L , Chang P J , Shan S Y , Jiang X H , Hu Z X , Zhang B , Zhao Y N , Ou S J . Spectrochim. Acta A , 2025 , 328 : 125475 .
Kim J , Jain A , Zuo K C , Verduzco R , Walker S , Elimelech M , Zhang Z H , Zhang X H , Li Q L . Water Res. , 2019 , 160 : 445 - 453 .
ISBN :978- 92 - 4-004506 - 4 . Guidelines for Drinking-water Quality:Fourth Edition Incorporating the First and Second Addenda . World Health Organization.
GB 5749 - 2022 . Standards for Drinking Water Quality. National Standards of the People's Republic of China(生活饮用水卫生标准. 中华人民共和国国家标准) .
GB/T 50050 - 2017 . Code for Design of Industrial Recirculating Cooling Water Treatment. Ministry of Housing and Urban-Rural Development of the People's Republic of China(工业循环冷却水处理设计规范.中华人民共和国住房和城乡建设部) .
Apichai S , Kummuntakoon P , Pattananandecha T , Julsrigival J , Sawangrat K , Ogata F , Kawasaki N , Grudpan K , Saenjum C . Molecules , 2022 , 27 ( 15 ): 4841 .
Zou W R , Li J R , Gong X . Mater. Today Chem. , 2024 , 37 : 102001 .
GB 8537 -2018. National Food Safety Standard for Drinking Natural Mineral Water . National Health Commission of the People's Republic of China , State Administration for Market Regulation(食品安全国家标准 饮用天然矿泉水 . 中华人民共和国国家卫生健康委员会 , 国家市场监督管理总局) .
Baj J , Flieger W , Barbachowska A , Kowalska B , Flieger M , Forma A , Teresiński G , Portincasa P , Buszewicz G , Radzikowska-Büchner E , Flieger J . Int. J. Mol. Sci. , 2023 , 24 ( 19 ): 14959 .
Anker P , Wieland E , Ammann D , Dohner R E , Asper R , Simon W . Anal. Chem. , 1981 , 53 ( 13 ): 1970 - 1974 .
Zhou B , Jiang Y L , Guo Q , Das A , Sobrido A B J , Hing K A , Zayats A V , Krause S . ACS Appl. Nano Mater. , 2022 , 5 ( 11 ): 17087 - 17094 .
Lake E M R , Ge X , Shen X , Herman P , Hyder F , Cardin J A , Higley M J , Scheinost D , Papademetris X , Crair M C , Constable R T . Nat. Methods , 2020 , 17 ( 12 ): 1201 - 1209 .
Gao M , Li Y , Chen X , Li S , Ren L , Tang B Z . ACS Appl. Mater. Interfaces , 2018 , 10 ( 17 ): 14410 - 14417 .
Ghosh S , Chen Y , George A , Dutta M , Stroscio M A . Front. Chem. , 2020 , 8 : 594 .
Dominguez I , Corres J M , Villar I D , Mozo J D , Simerova R , Sezemsky P , Stranak V , Śmietana M , Matias I R . Sens. Actuators B , 2023 , 394 : 134446 .
Pei Y , McLeod J F , Payne S J , She Z . Electrocatalysis , 2021 , 12 ( 2 ): 176 - 187 .
Fan H , McGhee C E , Lake R J , Yang Z , Guo Z , Zhang X B , Lu Y . JACS Au , 2023 , 3 ( 4 ): 1615 - 1622 .
Su J X , Lu S Y , Hai J , Liang K , Li T R , Sun S H , Chen F J , Yang Z Y , Wang B D . ACS Sustainable Chem. Eng. , 2020 , 8 ( 45 ): 17687 - 17696 .
Lin C X , Qiu C B , Wang Y N , Liu Y W , Rong M C , Niu L . Sens. Diagn. , 2024 , 3 ( 1 ): 431 - 439 .
Bhardwaj S K , Singh H , Khatri M , Kim K H , Bhardwaj N . Biosens. Bioelectron. , 2022 , 202 : 113995 .
Zhu X H , Zhang Y Y , Liu M L , Liu Y . Biosens. Bioelectron. , 2021 , 171 : 112730 .
Phan T N L , Nguyen T X , Truong T T , Duong T K N , Doan V H M , Vo T T , Misra M , Choi J , Pal U , Oh J , Mondal S . SmartMat , 2025 , 6 : e70009 .
Lin C X , Song X H , Ye W L , Liu T , Rong M C , Niu L . J. Anal. Test. , 2024 , 8 : 95 - 113 .
Zhu Y L , Feng L L , Zhao R X , Liu B , Yang P P . ACS Appl. Nano Mater. , 2024 , 7 ( 3 ): 2546 - 2574 .
Wang P , Zhao D Y , Hui X B , Qian Z , Zhang P , Ren Y Y , Lin Y , Zhang Z W , Yin L W . Adv. Energy Mater. , 2021 , 11 ( 20 ): 2003069 .
Zhao L , Wang Z , Li Y , Wang S , Wang L F , Qi Z J , Ge Q , Liu X G , Zhang J Z . J. Mater. Sci. Technol. , 2021 , 78 : 30 - 37 .
Xue Q , Zhang H J , Zhu M S , Pei Z X , Li H F , Wang Z F , Huang Y , Huang Y , Deng Q H , Zhou J , Du S Y , Huang Q , Zhi C Y . Adv. Mater. , 2017 , 29 ( 22 ): 1604847 .
Guan Q W , Ma J F , Yang W J , Zhang R , Zhang X J , Dong X X , Fan Y T , Cai L L , Cao Y , Zhang Y L , Li N , Xu Q . Nanoscale , 2019 , 11 ( 30 ): 14123 - 14133 .
Wang J J , Pei J C , Li G Y . Spectrochim. Acta A , 2023 , 290 : 122287 .
Rong M C , Yang X H , Huang L Z , Chi S T , Zhou Y B , Shen Y N , Chen B Y , Deng X Z , Liu Z Q . ACS Appl. Mater. Interfaces , 2019 , 11 ( 3 ): 2336 - 2343 .
Rocio U V , Aurora R R , Miguel M C , Fabio C , Daniela L , David E G , Isabel B , Paulo P L , Mauro B , Carlos P I . Inorg. Chem. , 2020 , 59 ( 19 ): 14306 - 14317 .
Ba Q K , Meena A , Jana A . Inorg. Chem. , 2023 , 62 ( 46 ): 19025 - 19032 .
0
浏览量
28
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构