浏览全部资源
扫码关注微信
广州大学 环境科学与工程学院,广东 广州 510006
孙慧,博士,教授,研究方向:环境分析,E-mail:esesunhui@gzhu.edu.cn
收稿日期:2025-03-19,
修回日期:2025-05-10,
录用日期:2025-05-23,
纸质出版日期:2025-08-15
移动端阅览
易珍妮,杨芳,刘嘉伟,王申能,王耀文,肖毅鹏,孙慧.基于阳离子光子晶体水凝胶的PFOS特异性识别与现场可视化检测研究[J].分析测试学报,2025,44(08):1577-1584.
YI Zhen-ni,YANG Fang,LIU Jia-wei,WANG Shen-neng,WANG Yao-wen,XIAO Yi-peng,SUN Hui.Specific Recognition and On-site Visual Detection of PFOS Using Cationic Photonic Crystal Hydrogels[J].Journal of Instrumental Analysis,2025,44(08):1577-1584.
易珍妮,杨芳,刘嘉伟,王申能,王耀文,肖毅鹏,孙慧.基于阳离子光子晶体水凝胶的PFOS特异性识别与现场可视化检测研究[J].分析测试学报,2025,44(08):1577-1584. DOI: 10.12452/j.fxcsxb.250319206.
YI Zhen-ni,YANG Fang,LIU Jia-wei,WANG Shen-neng,WANG Yao-wen,XIAO Yi-peng,SUN Hui.Specific Recognition and On-site Visual Detection of PFOS Using Cationic Photonic Crystal Hydrogels[J].Journal of Instrumental Analysis,2025,44(08):1577-1584. DOI: 10.12452/j.fxcsxb.250319206.
该研究创新性地构建了一种智能传感材料,实现了水体中全氟辛烷磺酸(PFOS)的特异性识别与可视化检测。通过将季铵盐单体-甲基丙烯酰氧乙基三甲基氯化铵(MTAC)与聚乙二醇二丙烯酸酯(PEGDA)进行交联共聚,在聚苯乙烯(PS)光子晶体模板上构建出了具有强阳离子特性的光子晶体水凝胶(PCH)。该材料结合了光子晶体的结构显色特性与智能水凝胶的刺激响应特性,当PFOS与阳离子位点以及凝胶骨架发生特异性结合时,凝胶网络收缩,可通过肉眼可辨的显色响应(红→黄绿)以及布拉格衍射波长的偏移实现目标物的检测。与其他全氟羧酸类化合物及阴离子表面活性剂十二烷基磺酸钠(SDS)相比,该传感器对PFOS展现出优异的选择性识别能力,检出限为1.42 μmol/L。在实际水样检测中表现出良好的可靠性(加标回收率92.5%~97.8%),并可重复使用。该传感器不仅实现了污染物捕获与光学信号自表达的双重功能,还具备直观可视、响应快速、低成本等优势,为环境水体中PFOS污染物的现场快速筛查与污染水体的实时监测提供了新型可视化传感平台。
In this study,an intelligent sensing material was innovatively constructed for the efficient adsorption and visualization of perfluorooctane sulfonate(PFOS) in water. Owing to the cross-linking and copolymerization
between the quaternary ammonium salt monomer(methacrylatoethyl trimethyl ammonium chloride,MTAC) and polyethylene glycol diacrylate(PEGDA) on a polystyrene(PS) photonic crystal template,a three-dimensional photonic crystal hydrogel(PCH) network with strong cationic characteristics was established. The material,named MTAC-PCH,combined the structural color rendering property of photonic crystal and the stimulus response property of smart hydrogel. When PFOS specifically bound to the cationic sites and the gel skeleton,the detection of the target could be realized by the eye-recognizable color response(red→yellow-green) and the shift of Bragg diffraction wavelength. The successful synthesis of MTAC-PCH and its adsorption ability for PFOS were confirmed by SEM,FTIR,and EDS analysis. The adsorption and optical response mechanism of MTAC-PCH involved triple synergistic effects:(1) electrostatic interaction of quaternary ammonium cations(N⁺) in the gel network with PFOS sulfonate groups(—SO₃
-
);(2) molecular sieving governed by the pore architecture of the gel matrix,combined with the hydrophobic interactions between the fluorinated carbon chains(C—F) of PFOS and both the PS microsphere and the hydrophobic pockets within the MTAC-PCH framework;(3) the contraction of gel network and the altering of lattice constants of the PCH structure triggered by PFOS binding,which can subsequently cause blue shifting of diffraction peaks and changing of structural color. This multiple synergistic effects enabled MTAC-PCH to maintain the efficient recognition and detection of PFOS in complex environmental matrices. The experimental results showed that the sensor can achieve adsorption equilibrium within 30 minutes,exhibiting a low detection limit of 1.42 μmol/L and excellent selective recognition capabilities for PFOS. Compared with other perfluorocarboxylic acid compounds and the anionic surfactant sodium dodecyl sulfonate(SDS),the response of MTAC-PCH to PFOS was significantly superior to other interferents,demonstrating
good specificity. The material maintained good detection performance after three adsorption-desorption cycles and showed good reliability(spiked recoveries of 92.5%-97.8%) in the detection of PFOS in real water samples. The sensor not only provides the dual functions of pollutant capture and optical signal self-expression,but also possesses the advantages of intuitive visualization,fast response and low cost,which is especially suitable for on-site rapid screening and real-time monitoring of PFOS in polluted water bodies.
Awad E , Zhang X M , Bhavsar S P , Petro S , Crozier P W , Reiner E J , Fletcher R , Tittlemier S A , Braekevelt E . Environ. Sci. Technol. , 2011 , 45 ( 19 ): 8081 - 8089 .
Zeng H S , He C , Yang Y Y , Zeng X L , Xie J L , Liu N , Deng J W , Luan T G . J . Instrum. Anal . (曾海深,何财,杨运云,曾细柳,谢嘉良,刘宁,邓洁薇,栾天罡.分析测试学报), 2024 , 43 ( 8 ): 1189 - 1196 .
Wang X L , Chen Z Y , Wang Y L , Sun W J . Environ. Pollut. , 2021 , 291 : 118014 .
Deng Y , Liang Z H , Lu X W , Chen D , Li Z , Wang F . Chemosphere , 2021 , 283 : 131168 .
Kelly B C , Ikonomou M G , Blair J D . Environ. Sci. Technol. , 2009 , 43 ( 15 ): 6110 - 6111 .
Rodetic L , Plontak L , Loborec J , Grčić I . Chemosphere , 2024 , 362 : 142922 .
Arefi-Oskoui S , Khataee A , Khosrowshahi E M , Kudaibergenov N . Environ. Res. , 2024 , 252 : 118838 .
Viada B N , Yudi L M , Arrigan D W M . Analyst , 2020 , 145 ( 17 ): 5776 - 5786 .
Liu J , Wang X , Ma F Y , Yang X C , Liu Y J , Zhang X Y , Guo S E , Wang Z P , Yang S H , Zhao R S . Chem. Eng. J. , 2022 , 435 : 134966 .
Chen X Y , Hussain S , Tang Y H , Chen X , Zhang S J , Wang Y , Zhang P , Gao R X , Wang S C , Hao Y . Sci. Total Environ. , 2023 , 860 : 160467 .
Daniele M , Nocentini S . Crystals , 2020 , 10 ( 8 ): 688 .
Kamau S , Hurley N , Kaul A B , Cui J , Lin Y . Photonics , 2024 , 11 ( 1 ): 13 .
Hu T Y , Zhang Y Y , Zhao Q , Cao Y H . J. Instrum. Anal. (胡亭屹,张云,赵强,曹玉华. 分析测试学报), 2023 , 42 ( 5 ): 628 - 633 .
Youngjoon S , Quang P , Bowen S , Yoonjin W . Small , 2019 , 15 ( 12 ): 1804523 .
Qin X T , Liu G Q , Liu C H , Liu J X , Li H H , Cao Y L , Fan X D . Acta Polym . Sin. (秦夏彤,刘根起,刘晨辉,刘建勋,李欢欢,曹云雷,范晓东. 高分子学报), 2020 , 51 ( 2 ): 191 - 197 .
Jrad A , Das G , Alkhatib N , Prakasam T , Benyettou F , Varghese S , Gándara F , Olson M , Kirmizialtin S , Trabols A . Nat. Commun. , 2024 , 15 : 10490 .
Wang W , Zhou Z M , Shao H P , Zhou S X , Yu G , Deng S B . Chem. Eng. J. , 2021 , 412 : 127509 .
Gotad P S , Bochenek C , Wesdemiotis C , Jana S C . Langmuir , 2024 , 40 ( 19 ): 9833 - 10404 .
Goss K U . Environ. Sci. Technol. , 2008 , 42 ( 2 ): 456 - 458 .
Wang F , Shih K . Water Res. , 2011 , 45 : 2925 - 2930 .
Fang J H , Xu K , Liu A , Xue Y H , Tie L , Deng Z L , Qiu R L , Zhang W X . Environ. Sci. Nano , 2024 , 11 : 1915 - 1925 .
0
浏览量
51
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构