浏览全部资源
扫码关注微信
暨南大学 环境与气候学院,广东省环境污染与健康重点实验室,广东 广州 511443
李慧珍,博士,教授,研究方向:流域复合污染水生态风险识别与评估,E-mail:lihuizhen@jnu.edu.cn
收稿日期:2025-03-14,
修回日期:2025-04-02,
录用日期:2025-04-17,
网络出版日期:2025-04-28,
纸质出版日期:2025-08-15
移动端阅览
吴若彤,李慧珍,游静.珠三角大城市地表水中新烟碱杀虫剂及其转化产物的赋存特征及风险评估[J].分析测试学报,2025,44(08):1659-1667.
WU Ruo-tong,LI Hui-zhen,YOU Jing.Occurrence and Risk Assessment of Neonicotinoid Insecticides and Their Transformation Products in Surface Water from Mega-city of the Pearl River Delta[J].Journal of Instrumental Analysis,2025,44(08):1659-1667.
吴若彤,李慧珍,游静.珠三角大城市地表水中新烟碱杀虫剂及其转化产物的赋存特征及风险评估[J].分析测试学报,2025,44(08):1659-1667. DOI: 10.12452/j.fxcsxb.250314195.
WU Ruo-tong,LI Hui-zhen,YOU Jing.Occurrence and Risk Assessment of Neonicotinoid Insecticides and Their Transformation Products in Surface Water from Mega-city of the Pearl River Delta[J].Journal of Instrumental Analysis,2025,44(08):1659-1667. DOI: 10.12452/j.fxcsxb.250314195.
为探究水环境中新烟碱杀虫剂(NEOs)及其转化产物(TPs)的赋存、组成和空间分布特征,该文分析了珠江广州段 40个水样中7种NEOs及6种TPs的质量浓度,并分别利用风险商和相对效力因子法评估其潜在水生态环境风险及健康风险。结果表明,珠江广州段水体中NEOs被广泛检出,水体中7种NEOs及6种TPs的总质量浓度为43.7~865 ng/L(平均值±标准差:(197±149) ng/L)。珠江广州段下游水体中NEOs及TPs的质量浓度高于上游,且主要是由于下游水体中吡虫啉脲(IMI-UR)的质量浓度升高导致,表明农业种植区附近水体中NEOs及TPs的检出浓度较高。吡虫啉(IMI)及其3种TPs是水相中最主要的组分,检出浓度占总浓度的71%。风险商的结果显示,珠江广州段水体中目标NEOs的水生态环境风险处于低到中等水平,亟需关注其长期暴露风险。健康风险评估结果显示,广州地表水中NEOs的暴露风险均较低。
The increasing use of neonicotinoid insecticides(NEOs) in agriculture as well as in daily life and the increased persistence of their transformation products(TPs) in water may pose a significant threat to aquatic organisms in receiving rivers. However,the current understanding of the pollution characteristics and ecological risks of NEOs and their TPs in urban aquatic environments remains limited. In order to investigate the occurrence,composition and spatial distribution of NEOs and their TPs in the aquatic environment,seven NEOs and six TPs in 40 water samples in the Guangzhou reach of the Pearl River were analyzed,and their potential water ecological risks and health risks were further assessed using risk quotients and the relative potency factor,respectively. The results showed that NEOs and TPs were widely detected in the aqueous phase of Guangzhou reach of Pearl River,with the total concentration of 43.7 to 865 ng/L(mean±standard deviation:(197±149) ng/L). The concentrations of NEOs and TPs in the downstream were generally higher than those in the upstream. This was mainly due to the elevated concentration of imidacloprid-urea(IMI-UR) in the downstream. These results indicated that higher concentrations of NEOs and TPs were detected in the aqueous phase near the agricultural cultivation area. Imidacloprid(IMI) and its three TPs were the most dominant components in all the aqueous phase,and the detected concentrations accounted for 71% of the total concentrations. The results of the risk quotient indicated that the aquatic ecological risk of the target NEOs in the aqueous phase of Guangzhou reach of Pearl River was at a low to moderate level. Moreover,it is urgent to pay attention to their long-term risk to aquatic organisms. The results of the health risk assessment showed that the exposure risks of NEOs in surface water in Guangzhou were all low.
Hladik M L , Corsi S R , Kolpin D W , Baldwin A K , Blackwell B R , Cavallin J E . Environ. Pollut. , 2018 , 235 : 1022 - 1029 .
Wei F H , Wang D L , Li H Z , Xia P , Ran Y , You J . Environ. Pollut. , 2020 , 260 : 114011 .
Yamamuro M , Komuro T , Kamiya H , Kato T , Hasegawa H , Kameda Y . Science , 2019 , 366 ( 6465 ): 620 - 623 .
Hallmann C A , Foppen R P B , Van Turnhout C A M , De Kroon H , Jongejans E . Nature , 2014 , 511 ( 7509 ): 341 - 343 .
Malev O , Klobučar R S , Fabbretti E , Trebše P . Pestic. Biochem. Physiol. , 2012 , 104 ( 3 ): 178 - 186 .
Bonmatin J M , Giorio C , Girolami V , Goulson D , Kreutzweiser D P , Krupke C , Liess M , Long E , Marzaro M , Mitchell E A D . Environ. Sci. Pollut. Res. , 2015 , 22 : 35 - 67 .
Sánchez-Bayo F . Science , 2014 , 346 ( 6211 ): 806 - 807 .
Morrissey C A , Mineau P , Devries J H , Sanchez-Bayo F , Liess M , Cavallaro M C , Liber K . Environ. Int. , 2015 , 74 : 291 - 303 .
Liu Z K , Zhang L M , Zhang Z L , An L H , Hough R , Hu P , Li Y F , Zhang F X , Wang S , Zhao Y Q , Ke Y X , Cui S . Environ. Sci. Pollut. Res. , 2022 , 29 ( 37 ): 55336 - 55347 .
Zhang C , Yi X H , Chen C , Tian D , Liu H B , Xie L T , Zhu X P , Huang M Z , Ying G G . Environ. Int. , 2020 , 139 : 105719 .
Han W C , Tian Y , Shen X M . Chemosphere , 2018 , 192 : 59 - 65 .
Costa C , Silvari V , Melchini A , Catania S , Heffron J J , Trovato A , De Pasquale R . Mutat. Res. Genet. Toxicol. Environ. Mutagen. , 2009 , 672 ( 1 ): 40 - 44 .
Yu J , Ho W T , Lu H M , Yang Y F . Environ. Monit. Assess. , 2011 , 174 : 681 - 692 .
Zhang C , Tian D , Yi X H , Zhang T , Ruan J J , Wu R R , Chen C , Huang M Z , Ying G G . Chemosphere , 2019 , 217 : 437 - 446 .
Qin R H , Wei Z Y , Huang Y Y , Bai X Y , Zhang Z Q , Zhong Z Q , Gui D , Wang L , Sun H W , Zhang T . ACS ES&T Water , 2024 , 4 ( 1 ): 68 - 78 .
Hladik M L , Kolpin D W , Kuivila K M . Environ. Pollut. , 2014 , 193 : 189 - 196 .
Tan H D , Wang C M , Zhu S P , Liang Y F , He X Y , Li Y , Wu C Y , Li Q F , Cui Y M , Deng X . J. Hazard. Mater. , 2023 , 446 : 130716 .
Wang Y L , Xiong J J , Ohore O E , Cai Y E , Fan H L , Sanganyado E , Li P , You J , Liu W H , Wang Z . Sci. Total Environ. , 2022 , 828 : 154569 .
Backhaus T , Faust M . Environ. Sci. Technol. , 2012 , 46 ( 5 ): 2564 - 2573 .
Vryzas Z , Vassiliou G , Alexoudis C , Papadopoulou-Mourkidou E . Water Res. , 2009 , 43 ( 1 ): 1 - 10 .
Lu C S , Chang C H , Palmer C , Zhao M R , Zhang Q . Environ. Sci. Technol. , 2018 , 52 ( 5 ): 3175 - 3184 .
Chen Y Y , Lyu J , Gao S H , Ye B X , Zhang L . ACS ES&T Water , 2024 , 4 ( 6 ): 2644 - 2654 .
NY/T 2874 - 2015 . Allowable Daily Intake of Pesticides. Agricultural Industry Standards of the People's Republic of China(农药每日允许摄入量. 中华人民共和国农业行业标准) , 2015 .
Chen Y C , Zang L , Liu M D , Zhang C L , Shen G F , Du W , Sun Z , Fei J , Yang L Y , Wang Y L , Zhao M R . Environ. Int. , 2019 , 127 : 550 - 557 .
Wan Y J , Wang Y , Xia W , He Z Y , Xu S Q . Sci. Total Environ. , 2019 , 675 : 513 - 519 .
Webb D T , Zhi H , Kolpin D W , Klaper R D , Iwanowicz L R , LeFevre G H . Environ . Sci.-Processes Impacts , 2021 , 23 ( 5 ): 678 - 688 .
Wang T L , Zhong M M , Lu M L , Xu D J , Xue Y G , Huang J , Blaney L , Yu G . Sci. Total Environ. , 2021 , 782 : 146826 .
Lu C S , Lu Z B , Lin S , Dai W , Zhang Q . Environ. Pollut. , 2020 , 258 : 113722 .
Zhang X X , Cao Y X , Cao J C , Li Q , Yan Y B . Environ. Pollut. , 2023 , 333 : 122068 .
Liu Z K , Cui S , Zhang L M , Zhang Z L , Hough R , Fu Q , Li Y F , An L , Huang M , Li K . Environ. Sci. Ecotechnol. , 2021 , 8 : 100128 .
Xiong J J , Wang Z , Ma X , Li H Z , You J . Sci. Total Environ. , 2019 , 648 : 1305 - 1312 .
Yi X H , Zhang C , Liu H B , Wu R R , Tian D , Ruan J J , Zhang T , Huang M Z , Ying G G . Environ. Pollut. , 2019 , 251 : 892 - 900 .
Liao L Z , Sun T , Gao Z H , Lin J N , Gao M , Li A , Gao T , Gao Z Q . Environ. Sci. Pollut. Res. , 2024 , 31 ( 39 ): 51098 - 51113 .
Xiong J J , Tan B X , Ma X , Li H Z , You J . J. Hazard. Mater. , 2021 , 413 : 125421 .
Yan X T , Cai Y Y , Zhang Q Q , Guo Z , Ying G G . Sci. Total Environ. , 2024 , 948 : 174392 .
0
浏览量
41
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构