浏览全部资源
扫码关注微信
1.云南省农业科学院 药用植物研究所,云南 昆明 650200
2.云南省天麻与真菌共生生物学重点实验室/ 昭通学院,云南 昭通 657000
刘鸿高,博士,教授,研究方向:食药用真菌资源研究,E-mail:honggaoliu@126.com
王元忠,博士,研究员,研究方向:中药资源开发与利用,E-mail:boletus@ 126. com
收稿日期:2025-01-24,
修回日期:2025-03-20,
录用日期:2025-03-20,
纸质出版日期:2025-06-15
移动端阅览
苏俊宇,刘鸿高,王元忠.基于FT-NIR技术结合化学计量学方法快速准确鉴别天麻不同栽培品种[J].分析测试学报,2025,44(06):1086-1095.
SU Jun-yu,LIU Hong-gao,WANG Yuan-zhong.Rapid and Accurate Identification of Gastrodia elata Blum Cultivar Based on FT-NIR Spectroscopy Combined with Chemometric Methods[J].Journal of Instrumental Analysis,2025,44(06):1086-1095.
苏俊宇,刘鸿高,王元忠.基于FT-NIR技术结合化学计量学方法快速准确鉴别天麻不同栽培品种[J].分析测试学报,2025,44(06):1086-1095. DOI: 10.12452/j.fxcsxb.25012462.
SU Jun-yu,LIU Hong-gao,WANG Yuan-zhong.Rapid and Accurate Identification of Gastrodia elata Blum Cultivar Based on FT-NIR Spectroscopy Combined with Chemometric Methods[J].Journal of Instrumental Analysis,2025,44(06):1086-1095. DOI: 10.12452/j.fxcsxb.25012462.
采用傅里叶变换近红外光谱(FT-NIR)与二维相关光谱(2DCOS)技术,结合化学计量学方法和深度学习算法,分别构建了偏最小二乘判别分析(PLS-DA)模型和残差卷积神经网络(ResNet)模型,快速准确鉴别了3种栽培品种天麻(
Gastrodia elata
Blum)样本(共计447份)。结果表明:FT-NIR数据经一阶导数(1st Der)和多元散射校正(MSC)组合预处理后建立的PLS-DA模型综合性能最好(准确率99.00%)。同时,基于FT-NIR同步2DCOS图像结合ResNet模型的鉴别方法,无需筛选最佳预处理和进行复杂的数据转换,即可实现对不同栽培品种天麻的快速精确鉴别(准确率100.00%)。该研究为鉴别不同栽培品种的天麻提供了一种快速、准确的新方法,可为天麻种质资源研究与新品种选育进一步奠定基础。
In this study,a partial least squares discriminant analysis(PLS-DA) model and a residual convolution neural network(ResNet) model were constructed using Fourier transform near-infrared spectroscopy(FT-NIR) and two-dimensional correlation spectroscopy(2DCOS) technology,in conjunction with chemometric methods and deep learning algorithms,to rapidly and accurately identify three cultivated varieties of
Gastrodia elata
Blum(
G
.
elata
Bl.) samples(447). The results showed that the PLS-DA model,created by integrating first derivativ (1st Der) and multiple scatter correction(MSC) preprocessing of FT-NIR data,demonstrated the highest stability and the best overall performance,with an accuracy of 99.00%. At the same time,the identification method based on FT-NIR synchronous 2DCOS image combined with ResNet model could achieve rapid and accurate identification(100.00% accuracy) of different cultivars of
G. elata
Bl without the need for optimal pretreatment and complex data conversion. This study provides a rapid and accurate method for identifying different cultivars of
G. elata
Bl.,and lays a foundation for further germplasm resource research and breeding of new variety.
Deng G M , Li J Q , Liu H G , Wang Y Z . Agric & Technol. (邓光美,李杰庆,刘鸿高,王元忠. 农业与技术), 2024 , 44 ( 5 ): 171 - 177 .
Huang C L , Yang J M , Wang K C , Lee Y C , Lin Y L , Yang Y C , Huang N K . J. Ethnopharmacol. , 2011 , 138 ( 1 ): 162 - 168 .
Guo J X , Xie J , Jiang L S , Gao J H , Rao C L , Zuo L L . Chin. Tradit. Herb. Drugs (郭佳欣,谢佳,蒋丽施,高继海,饶朝龙,左蕾蕾. 中草药), 2022 , 53 ( 7 ): 2247 - 2254 .
Yang P P , Zeng Z D , Hou Y , Chen A M , Xu J , Zhao L Q , Liu X Y . J. Pharm. Biomed. Anal. , 2023 , 235 : 115592 .
Hu C Y , Wang S B , Yu C J , Xu Q X . J. Chin. Med. Mat. (胡昌勇 , 王绍柏 , 余昌俊 , 许启新 . 中药材) , 2003 ,( 4 ): 238 - 242 .
Yu C J , Wang S B , Liu X M . Bull. Biol. (余昌俊,王绍柏,刘雪梅. 生物学通报) , 2010 , 45 ( 3 ): 12 - 14 .
Wang G Z , Gong Q Q , Yu N J , Gao H B , Xing L H , Du F P . Sci. Technol. Food Ind . (王广政,巩晴晴,俞年军,高翰博,邢丽花,杜方平. 食品工业科技), 2023 , 44 ( 3 ): 269 - 278 .
Wu Z H , Liu L M , Pan J R , Wang S B . Chin. J. Ethnomed. Ethnopharm. (吴尊华,刘立明,潘家荣,王绍柏. 中国民族民间医药) , 2011 , 20 ( 5 ): 41 , 43 .
Duan G Y , Zhang M , Tang X J , Yan Y G , Yao H , Kan J Q , Liu X , Du M Y . J. Food Sci. Technol .(段桂媛,张曼,唐鑫静,颜宇鸽,姚红,阚建全,刘雄,杜木英. 食品科学技术学报) , 2024 , 42 ( 5 ): 157 - 167 .
Chen W C , Lai Y S , Lu K H , Lin S H , Liao L Y , Ho C T , Sheen L Y . J. Food Drug Anal. , 2015 , 23 ( 4 ): 803 - 810 .
Li G Y , Li J Q , Liu H G , Wang Y Z . Talanta , 2025 , 281 : 126910 .
Li G Y , Li J Q , Liu H G , Wang Y Z . Food Chem. , 2025 , 464 : 141529 .
Zhan W X , Yang X D , Lu G Q , Deng Y , Yang L N . Spectrochim. Acta A , 2022 , 264 : 120189 .
Chen H , Tan C , Li H J . Vib. Spectrosc. , 2021 , 113 : 103203 .
Mohammadi N , Esteki M , Simal G J . LWT , 2024 , 203 : 116401 .
Li Y C , Logan N , Quinn B , Hong Y H , Birse N , Zhu H , Haughey S , Elliott C T , Wu D . Food Chem. , 2024 , 438 : 138029 .
Yuan Z R , Niu M Q , Ma H T , Gao T , Zang J , Zhang Y W , Chen L Q . Int. J. Mech. Sci. , 2023 , 249 : 108265 .
Lu J , Qin J Z , Chen P , Chen X , Zhang Y Z , Zhao S J . Front. Pharmacol. , 2012 , 3 : 57 .
Wu Z , Gao R P , Li H , Liao X , Tang X , Wang X G , Su Z M . Food Res. Int. , 2022 , 157 : 111277 .
Fearn T , Riccioli C , Garrido-Varo A , Guerrero-Ginel J E . Chemom. Intell. Lab. Syst. , 2009 , 96 ( 1 ): 22 - 26 .
He G , Yang S B , Wang Y Z . Comput. Electron. Agric. , 2024 , 223 : 109127 .
Dong J E , Zuo Z T , Zhang J , Wang Y Z . Food Control , 2021 , 129 : 108132 .
Yan Z Y , Liu H G , Li T , Li J Q , Wang Y Z . LWT , 2022 , 162 : 113490 .
Kang C Z , Lai C J S , Zhao D , Zhou T , Liu D H , Lv C G , Wang S , Kang L P , Yang J , Zhan Z L , Huang L Q , Guo L P . J. Hazard. Mater. , 2017 , 340 : 221 - 230 .
Hou L , Wu P Y . Acta Polym. Sin. (侯磊,武培怡. 高分子学报), 2022 , 53 ( 5 ): 522 - 538 .
0
浏览量
74
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构