华东理工大学 制药工程与过程化学教育部工程研究中心,上海 200237
杨丙成,博士,教授,研究方向:分析仪器、色谱分析,E-mail:bcyang@ecust.edu.cn
收稿:2025-01-14,
修回:2025-02-17,
录用:2025-03-17,
纸质出版:2025-11-15
移动端阅览
黄雯,任之楚,杨丙成.一种基于开启型荧光绿色碳纳米点的溶解氧传感器[J].分析测试学报,2025,44(11):2331-2338.
HUANG Wen,REN Zhi-chu,YANG Bing-cheng.A Turn-on Green Fluorescence Carbon Nanodots Based on Dissolved Oxygen Sensor[J].Journal of Instrumental Analysis,2025,44(11):2331-2338.
黄雯,任之楚,杨丙成.一种基于开启型荧光绿色碳纳米点的溶解氧传感器[J].分析测试学报,2025,44(11):2331-2338. DOI: 10.12452/j.fxcsxb.25011431.
HUANG Wen,REN Zhi-chu,YANG Bing-cheng.A Turn-on Green Fluorescence Carbon Nanodots Based on Dissolved Oxygen Sensor[J].Journal of Instrumental Analysis,2025,44(11):2331-2338. DOI: 10.12452/j.fxcsxb.25011431.
该文以邻苯二胺为前驱体制备出最大激发波长为563 nm的绿色碳量子点(GCDs)用于溶解氧检测。GCDs具有荧光可切换特性,GCDs的荧光可先被连二亚硫酸钠猝灭,通入氧气后
荧光即可恢复,二者的转化是可逆的,可反复交替进行,并且GCDs的荧光强度不受交替次数影响。基于此原理制作出一种荧光开启型溶解氧探针,其荧光强度与溶解氧体积在0.4~0.8 mL范围内呈线性相关,检出限为1.43×10
-4
mol/L,空气中氧气的回收率为92.6%~102%,相对标准偏差为0.99%~9.5%(
n
=3),表现出良好的准确性和重复性。该方法被进一步拓展制作出基于GCDs试纸模式的溶解氧传感器,可通过试纸颜色变化直观显示溶解氧的浓度,该试纸可对溶液中的溶解氧浓度进行半定量检测,且相对商业传感器,对溶解氧的响应时间从12 min降至6 min,灵敏度也从1.17提高到1.35。该方法是一种具有便捷、成本低、响应迅速等优点的可快速检测溶解氧的可行方法。
The determination of dissolved oxygen is a crucial tool in ecological,environmental science,and hydrological research. By monitoring and regulating dissolved oxygen concentrations in real time,it is possible to effectively maintain aquatic ecological balance and promote sustainable development. Therefore,it is necessary to develop a dissolved oxygen sensitive material with low cost,simple preparation and high stability,and to realize rapid detection of dissolved oxygen in a fluorescence turn-on mode. The paper has described a green carbon nanodots(GCDs) with an excitation wavelength of 563 nm for sensing dissolved oxygen prepared by the precursor of
o
-phenylenediamine. The GCDs has been found to display a fluorescence-switchable property,the fluorescence of GCDs can be quenched by sodium dithionite and then restored by dissolved oxygen. The conversion between the two states is reversible and can be repeatedly alternated. Moreover,the fluorescence intensity of GCDs remains unaffected by the number of alternations. On this basis,the quenched GCDs can be used as a turn-on fluorescence dissolved oxygen sensor. The sensor shows a linear relationship with the dissolved oxygen content ranging from 0.4 to 0.8 mL and 0.143 mmol/L of the limit of detection. It also demonstrates good precision and good reproducibility for measuring the oxygen in air,as indicated by the recoveries of 92.6%-102% and the relative standard deviation(RSD) of 0.99%-9.5%(
n
=3). By immobilizing the GCDs onto the test paper,the above method has been extended to make a test paper-based dis
solved oxygen sensor. The dissolved oxygen content can be directly sensed by the color change of the test paper,and the prepared test strip can be applied to the constructed dissolved oxygen sensor with a dual-fiber optic probe to enable semi-quantitative detection of the dissolved oxygen concentration in a solution. Compared with commercial sensors,it shows fast response time(~6 min relative to~12 min of the solution manner above) and higher sensitivity(1.17 relative to 1.35 of the solution manners above). This method has been proved to be a feasible method for rapid detection of dissolved oxygen with the advantages of convenience,low cost and rapid response.
Gamo T . TrAC-Trends Anal. Chem. , 2011 , 30 ( 8 ): 1308 - 1319 .
Petrasek Z , Bolivar J M , Nidetzky B . Anal. Chem. , 2016 , 88 ( 21 ): 10736 - 10743 .
Ruggi A , Leeuwen F W B , Velders A H . Coord. Chem. Rev. , 2011 , 255 ( 21/22 ): 2542 - 2554 .
Zhang K Y , Gao P , Sun G , Zhan T , Li X , Liu S , Zhao Q , Lo K K W , Huang W . J. Am. Chem. Soc. , 2018 , 140 ( 25 ): 7827 - 7834 .
Willett M . Sensors , 2014 , 14 ( 4 ): 6084 - 6103 .
Cao M , Lv H , Hu S , Zhou G . J. Mater. Chem. C , 2024 , 12 ( 5 ): 1644 - 1651 .
Wei Y , Jiao Y , An D , Li D , Li W , Wei Q . Sensors , 2019 , 19 ( 18 ): 3995 - 4033 .
Hechtman H B , Grindlinger G A , Vegas A M , Manny J , Valeri C R . Crit. Care Med. , 1979 , 7 ( 9 ): 419 - 423 .
Ramamoorthy R , Dutta P K , Akbar S A . J. Mater. Sci. , 2003 , 38 ( 21 ): 4271 - 4282 .
Wang Q , Zhang J M , Li S . Instrum. Sci. Technol. , 2019 , 47 ( 1 ): 19 - 50 .
Wang X D , Wolfbeis O S . Chem. Soc. Rev. , 2014 , 43 ( 10 ): 3666 - 3761 .
Shehata N , Kandas I , Samir E . Nanomaterials , 2020 , 10 ( 2 ): 314 - 323 .
Chu C S , Lo Y L , Sung T W . Photonic Sens. , 2011 , 1 ( 3 ): 234 - 250 .
Xu X Y , Ray R , Gu Y L , Ploehn H J , Gearheart L , Raker K , Scrivens W A . J. Am. Chem. Soc. , 2004 , 126 ( 40 ): 12736 - 12737 .
Baker S N , Baker G A . Angew. Chem. Int. Ed. , 2010 , 49 ( 38 ): 6726 - 6744 .
Strauss V , Kahnt A , Zolnhofer E M , Meyer K , Maid H , Placht C , Bauer W , Nacken T J , Peukert W , Etschel S H , Halik M , Guldi D M . Adv. Funct. Mater. , 2016 , 26 ( 44 ): 7975 - 7985 .
Wang Y X , Rinawati M , Huang W , Cheng Y , Lin P , Chen K , Chang L , Hon K , Su W , Yeh M . Carbon , 2022 , 186 : 406 - 415 .
Yang H Y , Zhang Y F , Gao W Y , Wu C . Talanta , 2024 , 279 : 126529 .
Wang C X , Strauss V , Kaner R B . Trends Chem. , 2019 , 1 ( 9 ): 858 - 868 .
Cadranel A , Margraf J T , Strauss V , Clark T , Guldi D M . Acc. Chem. Res. , 2019 , 52 ( 4 ): 955 - 963 .
Song R W , Shen C L , Zheng G S , Ni Q C , Liu K K , Zang J H , Dong L , Lou Q , Shan C X . Nano. Lett. , 2023 , 23 ( 24 ): 11669 - 11677 .
Song S Y , Liu K K , Wei J Y , Lou Q , Shang Y , Shan C X . Nano. Lett. , 2019 , 19 ( 8 ): 5553 - 5561 .
Yue X Y , Zhou Z J , Li Y , Wu Y M , Bai Y H . J. Instrum. Anal. (岳晓玥,周子君,李妍,伍永梅,白艳红. 分析测试学报), 2021 , 40 ( 5 ): 672 - 677 .
Li H , Hua J H , Hou C X , Wang H M , Tian H , Yang Y L , Li W Y . J. Instrum. Anal. (李宏,华建豪,侯朝祥,王翰墨,田浩,杨亚玲,李晚谊. 分析测试学报), 2019 , 38 ( 1 ): 52 - 57 .
Wan Q , Li Y X , Ding K K , Xie Y L , Fan J Z , Tong J L , Zeng Z B , Li Y , Zhao C H , Wang Z M , Tang B Z . J. Am. Chem. Soc. , 2023 , 145 ( 3 ): 1607 - 1616 .
Wang L , Li W T , Yin L Q , Liu Y J , Guo H Z , Lai J W , Han Y , Li G , Li M , Zhang J H , Vajtai R , Ajayan P M , Wu M H . Sci. Adv. , 2020 , 6 ( 40 ): 6772 - 6780 .
Zhao Y M , Geng X , Shi X X , Guo Y F , Sun Y Q , Qu L B , Li Z H . J. Mater. Chem. C , 2021 , 9 ( 12 ): 4300 - 4306 .
Xiong Y , Xu J , Wang J W , Guan Y F . Anal. Bioanal. Chem. , 2009 , 394 ( 3 ): 919 - 923 .
0
浏览量
51
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构
京公网安备11010802024621
